Skip to main content
Log in

The Response of Amino Acid Frequencies to Directional Mutation Pressure in Mitochondrial Genome Sequences Is Related to the Physical Properties of the Amino Acids and to the Structure of the Genetic Code

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The frequencies of A, C, G, and T in mitochondrial DNA vary among species due to unequal rates of mutation between the bases. The frequencies of bases at fourfold degenerate sites respond directly to mutation pressure. At first and second positions, selection reduces the degree of frequency variation. Using a simple evolutionary model, we show that first position sites are less constrained by selection than second position sites and, therefore, that the frequencies of bases at first position are more responsive to mutation pressure than those at second position. We define a measure of distance between amino acids that is dependent on eight measured physical properties and a similarity measure that is the inverse of this distance. Columns 1, 2, 3, and 4 of the genetic code correspond to codons with U, C, A, and G in their second position, respectively. The similarity of amino acids in the four columns decreases systematically from column 1 to column 2 to column 3 to column 4. We then show that the responsiveness of first position bases to mutation pressure is dependent on the second position base and follows the same decreasing trend through the four columns. Again, this shows the correlation between physical properties and responsiveness. We determine a proximity measure for each amino acid, which is the average similarity between an amino acid and all others that are accessible via single point mutations in the mitochondrial genetic code structure. We also define a responsiveness for each amino acid, which measures how rapidly an amino acid frequency changes as a result of mutation pressure acting on the base frequencies. We show that there is a strong correlation between responsiveness and proximity, and that both these quantities are also correlated with the mutability of amino acids estimated from the mtREV substitution rate matrix. We also consider the variation of base frequencies between strands and between genes on a strand. These trends are consistent with the patterns expected from analysis of the variation among genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Adachi J, Hasegawa M (1996) Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol 42:459–468

    Article  CAS  PubMed  Google Scholar 

  • Alff-Steinberger C. (1969) The genetic code and error transmission. Proc Natl Acad Sci USA 64:584–591

    CAS  PubMed  Google Scholar 

  • Antezana MA, Kreitman M (1999) The nonrandom location of synonymous codons suggests that reading frame-independent forces have patterned codon preferences. JMol Evol 49:36–43

    CAS  Google Scholar 

  • Bielawski JP, Gold JR. (2002) Mutation patterns of mitochondrial H- and L-strand DNA in closely related cyprinid fishes. Genetics 161:1589–1597

    CAS  PubMed  Google Scholar 

  • Bharanidharan D, Bhargavi GR, Uthanumallian K, Gautham N (2004) Correlations between nucleotide frequencies and amino acid composition in 115 bacterial species. Biochem Biophys Res Commun 315:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Bogenhagen DF, Clayton DA (2003) The mitochondrial DNA replication bubble has not burst. Trends Biochem Sci 28:357–360

    CAS  PubMed  Google Scholar 

  • Bowmaker M, Yang MY, Yasukawa T, Reyes A, Jacobs HT, Huberman JA, Holt IJ (2003) Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone. J Biol Chem 278:50961–50969

    Article  CAS  PubMed  Google Scholar 

  • Coghlan A, Wolfe KH (2000) Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast 16:1131–1145

    Article  CAS  PubMed  Google Scholar 

  • Creighton TE (1993) Proteins: Structures and molecular properties, end ed. W. H. Freeman, New York

    Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington, DC, Vol 5, Suppl 3, pp 345–352

  • Dean MD, Ballard JWO (2005) High divergence among Drosophila simulans mitochondrial haplogroups arose in the midst of long term purifying selection. Mol Phylogenet Evol 36:328–337

    CAS  PubMed  Google Scholar 

  • Duret L (2000) tRNA gene number and codon usage in the C. elegans genome are coadapted for optimal translation of highly expressed genes. Trends Genet 16:287–289

    Article  CAS  PubMed  Google Scholar 

  • Engelman DA, Steitz TA, Goldman A (1986) Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem 15:321–353

    Article  CAS  PubMed  Google Scholar 

  • Faith JJ, Pollock DD (2003) Likelihood analysis of asymmetrical mutation bias gradients in vertebrate mitochondrial genomes. Genetics 165:735–745

    CAS  PubMed  Google Scholar 

  • Foster PG, Hickey DA (1999) Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol 48:284–290

    Article  CAS  PubMed  Google Scholar 

  • Foster PG, Jermiin LS, Hickey DA (1997) Nucleotide compositional bias affects amino acid content in proteins coded by animal mitochondria. J Mol Evol 44:282–288

    Article  CAS  PubMed  Google Scholar 

  • Freeland SJ, Knight RD, Landweber LF, Hurst LD (2000) Early fixation of an optimal genetic code. Mol Biol Evol 17:511–518

    CAS  PubMed  Google Scholar 

  • Gibson A, Gowri-Shankar V, Higgs PG, Rattray M (2005) A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Mol Biol Evol 22:251–264

    CAS  PubMed  Google Scholar 

  • Gilis D, Massar S, Cerf NJ, Rooman M (2001) Optimality of the genetic code with respect to protein stability and amino acid frequencies. Genome Biol 2(11):research00491

    Article  Google Scholar 

  • Goldman N, Yang Z. (1994) A codon-based model of nucleotide substitution for protein coding DNA sequences. Mol Biol Evol 11:725–736

    CAS  PubMed  Google Scholar 

  • Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864

    CAS  PubMed  Google Scholar 

  • Haig D, Hurst LD (1991) A quantitative measure of error minimization in the genetic code. J Mol Evol 33:412–417

    Article  CAS  PubMed  Google Scholar 

  • Halpern AL, Bruno WJ (1998) Evolutionary distances for protein-coding sequences: modeling site-specific residue frequencies. Mol Biol Evol 15:910–917

    CAS  PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano TA (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    CAS  PubMed  Google Scholar 

  • Hasegawa M, Cao Y, Yang Z (1998) Preponderence of slightly deleterious polymorphism in mitochondrial DNA: nonsynonymous/synonymous rate ratio is much higher within species than between species. Mol Biol Evol 15:1499–1505

    CAS  PubMed  Google Scholar 

  • Higgs PG, Attwood TK (2005) Bioinformatics and molecular evolution. Blackwell, Malden, MA

    Google Scholar 

  • Jameson D, Gibson AP, Hudelot C, Higgs PG (2003) OGRe: a relational database for comparative analysis of mitochondrial genomes. Nucleic Acids Res 31:202–206 (latest version available at http://ogre.mcmaster.ca)

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. CABIOS 8:275–282

    CAS  PubMed  Google Scholar 

  • Kanaya S, Yamada Y, Kudo Y, Ikemura T (1999) Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs. Gene 238:143–155

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Knight RD, Freeland SJ, Landweber LF (2001a) A simple model based on mutation and selection explains trends in codon and amino acid usage and GC composition within and across genomes. Genome Biol 2(4):research00101

    Google Scholar 

  • Knight RD, Landweber LF, Yarus M (2001b) How mitochondria redefine the code. J Mol Evol 53:299–313

    Article  CAS  Google Scholar 

  • Krishnan NM, Seligmann H, Raina SZ, Pollock DD. (2004) Detecting gradients of asymmetry in site-specific substitutions in mitochondrial genomes. DNA Cell Biol 23:707–714

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Lobry JR (1997) Influence of genomic G+C content on average amino acid composition of proteins from 59 bacterial species. Gene 205:309–316

    Article  CAS  PubMed  Google Scholar 

  • McLean MJ, Wolfe KH, Devine KM (1998) Base composition skews, replication orientation and gene orientation in 12 prokaryote genomes. J Mol Evol 47:691–696

    Article  CAS  PubMed  Google Scholar 

  • Miller S, Janin J, Lesk AM, Chothia C (1987) Interior and surface of monomeric proteins. J Mol Biol 196:641–657

    Article  CAS  PubMed  Google Scholar 

  • Muto A, Osawa S (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 84:166–169

    CAS  PubMed  Google Scholar 

  • Raina SZ, Faith JJ, Dusotell TR, Seligmann H, Stewart CB, Pollock DD. (2005) Evolution of base-substitution gradients in primate mitochondrial genomes. Genome Res 15:665–673

    Article  CAS  PubMed  Google Scholar 

  • Reyes A, Gissi C, Pesole G, Saccone C (1998) Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15:957–966

    CAS  PubMed  Google Scholar 

  • Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MH (1985) Hydrophobicity of amino acid residues in globular proteins. Science 228:834–838

    Google Scholar 

  • Schmitz J, Ohme M, Zischler H (2002) The complete mitochondrial sequence of Tarsius bancanus: evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA. Mol Biol Evol 19:544–553

    CAS  PubMed  Google Scholar 

  • Sengupta S, Higgs PG (2005) A unified model of codon reassignment in alternative genetic codes. Genetics 170:831–840

    Article  CAS  PubMed  Google Scholar 

  • Singer GAC, Hickey DA (2000) Nucleotide bias causes a genome wide bias in the amino acid composition of proteins. Mol Biol Evol 17:1581–1588

    CAS  PubMed  Google Scholar 

  • Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85:2653–2657

    CAS  PubMed  Google Scholar 

  • Sueoka N (1995) Intra-strand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol 40:318–325

    Article  CAS  PubMed  Google Scholar 

  • Sueoka N (1999) Two aspects of DNA base composition:G+C content and translation-coupled deviation from intra-strand rule of A = T and G = C. J Mol Evol 49:49–62

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Ozawa T (1994) Strand asymmetry in human mitochondrial DNA mutations. Genomics 22:327–335

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1965) On the evolution of the genetic code. Proc Natl Acad Sci USA 54:1546–1552

    CAS  PubMed  Google Scholar 

  • Woese CR, Dugre DH, Saxinger WC, Dugre SA (1966). The molecular basis for the genetic code. Proc Natl Acad Sci USA 55:966–974

    CAS  PubMed  Google Scholar 

  • Zimmerman JM, Eliezer N, Simha R (1968) The characterization of amino acids sequences in proteins by statistical methods. J Theor Biol 21:170–201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada and by Canada Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Higgs.

Additional information

[Reviewing Editor: Dr. David Pollock]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urbina, D., Tang, B. & Higgs, P.G. The Response of Amino Acid Frequencies to Directional Mutation Pressure in Mitochondrial Genome Sequences Is Related to the Physical Properties of the Amino Acids and to the Structure of the Genetic Code. J Mol Evol 62, 340–361 (2006). https://doi.org/10.1007/s00239-005-0051-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0051-1

Keywords

Navigation