Skip to main content
Log in

Gene Duplication and the Properties of Biological Networks

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Patterns of network connection of members of multigene families were examined for two biological networks: a genetic network from the yeast Saccharomyces cerevisiae and a protein–protein interaction network from Caenorhabditis elegans. In both networks, genes belonging to gene families represented by a single member in the genome (“singletons”) were disproportionately represented among the nodes having large numbers of connections. Of 68 single-member yeast families with 25 or more network connections, 28 (44.4%) were located in duplicated genomic segments believed to have originated from an ancient polyploidization event; thus, each of these 28 loci was thus presumably duplicated along with the genomic segment to which it belongs, but one of the two duplicates has subsequently been deleted. Nodes connected to major “hubs” with a large number of connections, tended to be relatively sparsely interconnected among themselves. Furthermore, duplicated genes, even those arising from recent duplication, rarely shared many network connections, suggesting that network connections are remarkably labile over evolutionary time. These factors serve to explain well-known general properties of biological networks, including their scale-free and modular nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Friedman R, Hughes AL (2001a) Gene duplication and the structure of eukaryotic genomes. Genome Res 11:373–381

    Article  CAS  Google Scholar 

  • Friedman R, Hughes AL (2001b) Pattern and timing of gene duplication in animal genomes. Genome Research 11:1842–1847

    Article  CAS  Google Scholar 

  • Hughes AL, Friedman R (2003) Parallel evolution by gene duplication in the genomes of two unicellular fungi. Genome Res 13:794–799

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Friedman R (2004) Differential loss of ancestral gene families as a source of genomic divergence in animals. Pro R Soc Lond B (Suppl) 271:S107–S109

    CAS  Google Scholar 

  • Kanehisa M (2000) Post-genome informatics. Oxford University Press, Oxford

    Google Scholar 

  • Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1977) Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267:275–276

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain P-O, Han J-D J, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual J-F, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berritz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A, Mange SE, Saxton WM, Strome S, van den Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Ravasz E, Barabási A-L (2003) Hierarchical organization in complex networks. Phys Rev E 67:026112

    Article  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Seoighe C, Wolfe KH (1999) Updated map of duplicated regions in the yeast genome. Gene 238:253–261

    Article  PubMed  CAS  Google Scholar 

  • Strimmer K, van Haeseler A (1996) Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland MA

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson T (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position–specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • Tong AHY, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesan H, Goldberg DS, Haynes J, Humphries C, He G, Levinson JN, Lu H, Ménard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu A-M, Shapiro J, Sheikh B, Suter B, Wong SL, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (2001) The yeast protein interaction network evolves rapidly and contains few redundant duplicated genes. Mol Biol Evol 18:1283–1292

    PubMed  CAS  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Grant GM 043940 to A.L.H. from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin L. Hughes.

Additional information

[Reviewing Editor : Dr. Manyuan Long]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, A.L., Friedman, R. Gene Duplication and the Properties of Biological Networks. J Mol Evol 61, 758–764 (2005). https://doi.org/10.1007/s00239-005-0037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0037-z

Keywords

Navigation