Skip to main content
Log in

Evolution of the Exon–Intron Structure and Alternative Splicing of the MAGE-A Family of Cancer/Testis Antigens

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Cancer/testis antigens (CT-antigens) are proteins that are predominantly expressed in cancer and testis and thus are possible targets for immunotherapy. Most of them form large multigene families. The evolution of the MAGE-A family of CT-antigens is characterized by four processes: (1) gene duplications; (2) duplications of the initial exon; (3) point mutations and short insertions/deletions inactivating splicing sites or creating new sites; and (4) deletions removing sites and creating chimeric exons. All this concerns the genomic regions upstream of the coding region, creating a wide diversity of isoforms with different 5′-untranslated regions. Many of these isoforms are gene-specific and have emerged due to point mutations in alternative and constitutive splicing sites. There are also examples of chimeric mRNAs, likely produced by splicing of read-through transcripts. Since there is consistent use of homologous sites for different genes and no random, indiscriminant use of preexisting cryptic sites, it is likely that most observed isoforms are functional, and do not result from relaxed control in transformed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • RD Bagnall NH Waseem PM Green B Colvin C Lee F Giannelli (1999) ArticleTitleCreation of a novel donor splice site in intron 1 of the factor VIII gene leads to activation of a 191 bp cryptic exon in two haemophilia A patients Br J Haematol 107 766–771

    Google Scholar 

  • I Boccaccio H Glatt-Deeley F Watrin N Roeckel M Laland F Muscatelli (1999) ArticleTitleThe human MAGEL2 gene and its mouse homologue are paternally expressed and mapped to the Prader-Willi region Hum Mol Genet 8 2497–2505

    Google Scholar 

  • D Brett H Pospisil J Valcarcel J Reich P Bork (2002) ArticleTitleAlternative splicing and genome complexity Nat Genet 30 29–30

    Google Scholar 

  • SB Cannon ND Young (2003) ArticleTitleOrthoParaMap: Distinguishing orthologs from paralogs by integrating comparative genome data and gene phylogenies BMC Bioinformatics 4 35

    Google Scholar 

  • P Chomez O Backer ParticleDe M Bertrand M Plaen ParticleDe T Boon S Lucas (2001) ArticleTitleAn overview of the MAGE gene family with the identification of all human members of the family Cancer Res 61 5544–5551

    Google Scholar 

  • B Dabovic E Zanaria B Bardoni A Lisa C Bordignon V Russo C Matessi C Traversari G Camerino (1995) ArticleTitleA family of rapidly evolving genes from the sex reversal critical region in Xp21 Mamm Genome 6 571–580 Occurrence Handle1:CAS:528:DyaK2MXoslKlsr0%3D Occurrence Handle8535061

    CAS  PubMed  Google Scholar 

  • E Plaen ParticleDe K Arden C Traversari JJ Gaforio JP Szikora C Smet ParticleDe F Brasseur P Bruggen Particlevan der B Lethe C Lurquin R Brasseur P Chomez O Backer ParticleDe W Cawenee T Boon (1994) ArticleTitleStructure, chromosomal localisation, and expression of 12 genes of the MAGE family Immunogenetics 40 360–369 Occurrence Handle7927540

    PubMed  Google Scholar 

  • E Plaen ParticleDe B Naerhuyzen C Smet ParticleDe J-P Szikora T Boon (1997) ArticleTitleAlternative promoters of gene MAGE-4a Genomics 40 305–313

    Google Scholar 

  • E Plaen ParticleDe O Backer ParticleDe D Arnaud B Bonjean P Chomez V Martelange P Avner P Baldacci C Babinet S-Y Hwang B Knowles T Boon (1999) ArticleTitleA new family of mouse genes homologous to the human MAGE genes Genomics 55 176–184

    Google Scholar 

  • C Smet ParticleDe C Lurquin P Bruggen Particlevan der E Plaen ParticleDe F Brasseur T Boon (1994) ArticleTitleSequence and expression pattern of the human MAGE2 gene Immunogenetics 39 121–129 Occurrence Handle8276455

    PubMed  Google Scholar 

  • NA Faustino TA Cooper (2003) ArticleTitlePre-mRNA splicing and human disease Genes Dev 17 419–437 Occurrence Handle10.1101/gad.1048803 Occurrence Handle1:CAS:528:DC%2BD3sXhslCqtb0%3D Occurrence Handle12600935

    Article  CAS  PubMed  Google Scholar 

  • J Felsenstein (1996) ArticleTitleInferring phylogenies from protein sequences by parsimony, distance, and likelihood methods Methods Enzymol 266 418–427

    Google Scholar 

  • MS Gelfand (1989) ArticleTitleStatistical analysis of mammalian pre-mRNA splicing sites Nucleic Acids Res 17 6369–6382

    Google Scholar 

  • Y Iida (1990) ArticleTitleQuantification analysis of 5′-splice signal sequences in mRNA precursors. Mutations in 5′-splice signal sequence of human beta-globin gene and beta-thalassemia J Theor Biol 145 523–533

    Google Scholar 

  • P Jay C Rougeulle A Massacrier A Moncla M-G Mattei P Malzac N Roëckel S Taviaux J-L Bergé Lefranc P Cau P Berta M Lalande F Muscatelli (1997) ArticleTitleThe human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region Nat Genet 17 357–361

    Google Scholar 

  • Z Kan D States W Gish (2002) ArticleTitleSelecting for functional alternative splices in ESTs Genome Res 12 1837–1845

    Google Scholar 

  • D Karolchik R Baertsch M Diekhans TS Furey A Hinrichs YT Lu KM Roskin M Schwartz CW Sugnet DJ Thomas RJ Weber D Haussler WJ Kent (2003) ArticleTitleThe UCSC Genome Browser Database Nucleic Acids Res 31 51–54 Occurrence Handle10.1093/nar/gkg129 Occurrence Handle1:CAS:528:DC%2BD3sXhvFSgu7g%3D Occurrence Handle12519945

    Article  CAS  PubMed  Google Scholar 

  • RP Ketterling JB Drost WA Scaringe DZ Liao JZ Liu CK Kasper SS Sommer (1999) ArticleTitleReported in vivo splice-site mutations in the factor IX gene: severity of splicing defects and a hypothesis for predicting deleterious splice donor mutations Hum Mutat 13 221–231

    Google Scholar 

  • FA Kondrashov EV Koonin (2001) ArticleTitleOrigin of alternative splicing by tandem exon duplication Hum Mol Genet 10 2661–2669

    Google Scholar 

  • M Krawczak J Reiss DN Cooper (1992) ArticleTitleThe mutational spectrum of base-pair substitutions in messenger RNA splice junctions of human genes—Causes and consequences Hum Genet 90 41–54 Occurrence Handle1:CAS:528:DyaK3sXks1Cmsro%3D Occurrence Handle1427786

    CAS  PubMed  Google Scholar 

  • I Letunic RR Copley P Bork (2002) ArticleTitleCommon exon duplication in animals and its role in alternative splicing Hum Mol Genet 11 1561–1567

    Google Scholar 

  • G Lev-Maor R Sorek N Shomron G Ast (2003) ArticleTitleThe birth of an alternatively spliced exon: 3′ Splice-site selection in Alu exons Science 300 1288–1291

    Google Scholar 

  • S Lucas C Smet ParticleDe KC Arden CS Viars B Lethe C Lurquin T Boon (1998) ArticleTitleIdentification of a new MAGE gene with tumor-specific expression by representational difference analysis Cancer Res 58 743–752

    Google Scholar 

  • S Lucas F Brasseur T Boon (1999) ArticleTitleA new MAGE gene with ubiquitous expression does not code for known MAGE antigens recognized by T cells Cancer Res 59 4100–4103 Occurrence Handle1:CAS:528:DyaK1MXlsVOlurs%3D Occurrence Handle10463614

    CAS  PubMed  Google Scholar 

  • S Lucas E Plaen ParticleDe T Boon (2000) ArticleTitleMAGE-B5, MAGE-B6, MAGE-C2, and MAGE-C3: Four new members of the MAGE family with tumor-specific expression Int J Cancer 87 55–60 Occurrence Handle10.1002/1097-0215(20000701)87:1<55::AID-IJC8>3.3.CO;2-A Occurrence Handle1:CAS:528:DC%2BD3cXktlGks7Y%3D Occurrence Handle10861452

    Article  CAS  PubMed  Google Scholar 

  • AA Mironov JW Fickett MS Gelfand (1999) ArticleTitleFrequent alternative splicing of human genes Genome Res 9 1288–1293

    Google Scholar 

  • B Modrek CJ Lee (2002) ArticleTitleA genomic view of alternative splicing Nat Genet 30 13–19

    Google Scholar 

  • B Modrek CJ Lee (2003) ArticleTitleAlternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss Nat Genet 34 117–180

    Google Scholar 

  • F Muscatelli AP Walker E Plaen ParticleDe AN Stafford AP Monaco (1995) ArticleTitleIsolation and characterization of a new MAGE gene family in the Xp21.3 region Proc Natl Acad Sci USA 92 4987–4991

    Google Scholar 

  • K Nakai H Sakamoto (1994) ArticleTitleConstruction of a novel database containing aberrant splicing mutations of mammalian genes Gene 141 171–177 Occurrence Handle10.1016/0378-1119(94)90567-3 Occurrence Handle1:CAS:528:DyaK2cXkt12mtbg%3D Occurrence Handle8163185

    Article  CAS  PubMed  Google Scholar 

  • KK Nelson MR Green (1990) ArticleTitleMechanism for cryptic splice site activation during pre-mRNA splicing Proc Natl Acad Sci USA 87 6253–6257

    Google Scholar 

  • JP O’Neill PK Rogan N Cariello JA Nicklas (1998) ArticleTitleMutations that alter RNA splicing of the human HPRT gene: a review of the spectrum Mutat Res 411 179–214

    Google Scholar 

  • RN Nurtdinov II Artamonova AA Mironov MS Gelfand (2003) ArticleTitleLow conservation of alternative splicing patterns in the human and mouse genomes Hum Mol Genet 12 1313–1320 Occurrence Handle10.1093/hmg/ddg137 Occurrence Handle1:CAS:528:DC%2BD3sXkt1WrurY%3D Occurrence Handle12761046

    Article  CAS  PubMed  Google Scholar 

  • M Pold J Zhou GL Chen JM Hall RA Vescio JR Berenson (1999) ArticleTitleIdentification of a new, unorthodox member of the MAGE gene family Genomics 59 161–167

    Google Scholar 

  • UC Rogner K Wilke E Steck B Korn A Poustka (1995) ArticleTitleThe melanoma antigen gene (MAGE) family is clustered in the chromosomal band Xq28 Genomics 29 725–731

    Google Scholar 

  • A Romani E Guerra M Trerotola S Alberti (2003) ArticleTitleDetection and analysis of spliced chimeric mRNAs in sequence databanks Nucleic Acids Res 31 e17

    Google Scholar 

  • MJ Scanlan AO Gure AA Jungbluth LJ Old Y-T Chen (2002) ArticleTitleCancer/testis antigens: An expanding family of targets for cancer immunotherapy Immunol Rev 188 22–32 Occurrence Handle10.1034/j.1600-065X.2002.18803.x Occurrence Handle1:CAS:528:DC%2BD38Xps1Oqsr4%3D Occurrence Handle12445278

    Article  CAS  PubMed  Google Scholar 

  • R Sorek G Ast D Graur (2002) ArticleTitleAlu-containing exons are alternatively spliced Genome Res 12 1060–1067

    Google Scholar 

  • R Sorek R Shamir G Ast (2004) ArticleTitleHow prevalent is functional alternative splicing in the human genome? Trends Genet 20 68–71

    Google Scholar 

  • PD Stenson EV Ball M Mort AD Phillips JA Shiel NS Thomas S Abeysinghe M Krawczak DN Cooper (2003) ArticleTitleHuman Gene Mutation Database (HGMD(R)): 2003 update Hum Mutat 21 577–581 Occurrence Handle10.1002/humu.10212 Occurrence Handle1:CAS:528:DC%2BD3sXkvVyhtrk%3D Occurrence Handle12754702

    Article  CAS  PubMed  Google Scholar 

  • P Stoilov E Meshorer M Gencheva D Glick H Soreq S Stamm (2002) ArticleTitleDefects in pre-mRNA processing as causes of and predisposition to diseases DNA Cell Biol 21 803–818

    Google Scholar 

  • B Stone M Schummer PJ Paley M Crawford M Ford N Urban BH Nelson (2001) ArticleTitleMAGE-F1, a novel ubiquitously expressed member of the MAGE superfamily Gene 267 173–182

    Google Scholar 

  • AI Su MP Cooke KA Ching Y Hakak JR Walker T Wiltshire AP Orth RG Vega LM Sapinoso A Moqrich A Patapoutian GM Hampton PG Schultz JB Hogenesch (2002) ArticleTitleLarge-scale analysis of the human and mouse transcriptomes Proc Natl Acad Sci USA 99 4465–4410

    Google Scholar 

  • B Tasic CE Nabholz KK Baldwin Y Kim EH Rueckert SA Ribich P Cramer Q Wu R Axel T Maniatis (2002) ArticleTitlePromoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing Mol Cell 10 21–33

    Google Scholar 

  • TA Thanaraj (2000) ArticleTitlePositional characterisation of false positives from computational prediction of human splice sites Nucleic Acids Res 28 744–754

    Google Scholar 

  • TA Thanaraj F Clark J Muilu (2003) ArticleTitleConservation of human alternative splice events in mouse Nucleic Acids Res 31 2544–2552

    Google Scholar 

  • JD Thompson DG Higgins TJ Gibson (1994) ArticleTitleCLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice Nucleic Acids Res 22 4673–4680 Occurrence Handle1:CAS:528:DyaK2MXitlSgu74%3D Occurrence Handle7984417

    CAS  PubMed  Google Scholar 

  • S Tuffery-Giraud S Chambert J Demaille M Claustres (1999) ArticleTitlePoint mutations in the dystrophin gene: Evidence for frequent use of cryptic splice sites as a result of splicing defects Hum Mutat 14 359–368

    Google Scholar 

  • P Bruggen Particlevan der C Traversari P Chomez C Lurquin E Plaen ParticleDe B Eynde ParticleVan den A Knuth T Boon (1991) ArticleTitleA gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma Science 254 1643–1647 Occurrence Handle1840703

    PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Andrew Simpson for the suggestion to analyze alternative splicing of CT antigens, to Andrey Mironov for useful discussion, and to Ali Osmay Güre for critical reading of the manuscript. We appreciate unpublished data on expression of alternatively spliced isoforms kindly provided by Matthew Scanlan and Ali Osmay Güre. This study was partially supported by grants from the Ludwig Institute of Cancer Research (CRDF RBO-1268), Howard Hughes Medical Institute (55000309), Russian Fund of Basic Research (04-04-49440), and Program in Molecular and Cellular Biology of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail S. Gelfand.

Additional information

Reviewing Editor: Dr. Dmitri Petrov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artamonova, I.I., Gelfand, M.S. Evolution of the Exon–Intron Structure and Alternative Splicing of the MAGE-A Family of Cancer/Testis Antigens. J Mol Evol 59, 620–631 (2004). https://doi.org/10.1007/s00239-004-2654-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-2654-3

Keywords

Navigation