Skip to main content
Log in

Molecular Evolution and Positive Selection of the Symbiotic Gene NORK in Medicago truncatula

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Understanding the selective constraints of partner specificity in mutually beneficial symbiosis is a significant, yet largely unexplored, prospect of evolutionary biology. These selective constraints can be explored through the study of nucleotide polymorphism at loci controlling specificity. The membrane-anchored receptor NORK (nodulation receptor kinase) of the legume Medicago truncatula controls early steps of root infection by two symbiotic microorganisms: nitrogen-fixing bacteria (rhizobia) and endomycorrhizal fungi (Glomales). We analyzed the diversity of the gene NORK by sequencing 4 kilobases in 28 inbred lines sampled from natural populations. We detected 33 polymorphic sites with only one nonsynonymous change. Analysis based on Tajima’s D and Fay and Wu’s H summary statistics revealed no departure from the neutral model. We analyzed divergence using sequences from the closely related species M. coerulea. The McDonald-Kreitman test indicated a significant excess of nonsynonymous changes contributing to this divergence. Furthermore, maximum-likelihood analysis of a molecular phylogeny of a few legume species indicated that a number of amino acid sites, likely located in the receptor domain of the protein, evolved under the regime of positive selection. Further research should focus on the rate and direction of molecular coevolution between microorganisms’ signaling molecules and legumes’ receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592

    CAS  PubMed  Google Scholar 

  • Barton NH (2000) Genetic hitchhiking. Phil Trans R Soc Lond B 355:1553–1562

    Article  CAS  Google Scholar 

  • Baum J, Ward RH, Conway DJ (2002) Natural selection on the erythrocyte surface. Mol Biol Evol 19:223–229

    CAS  PubMed  Google Scholar 

  • Béna G, Lejeune B, Prosperi J-M, Olivieri I (1998) Molecular phylogenetic approach for studying life-history evolution: the ambiguous example of the genus Medicago L. Proc R Soc Lond B 265:1141–1151

    Google Scholar 

  • Bergelson J, Kreitman M, Stahl EA, Tian D (2001) Evolutionary dynamics of plant R-genes. Science 292:2281–2285

    Article  CAS  PubMed  Google Scholar 

  • Bierne N, Eyre-Walker A (2003) The problem of counting sites in the estimation of the synonymous and nonsynonymous substitution rates: implications for the correlation between the synonymous substitution rate and codon usage bias. Genetics 165:1587–1597

    PubMed  Google Scholar 

  • Bonnin I, Huguet T, Gherardi M, Prosperi J-M, Olivieri I (1996) High level of polymorphism and spatial structure in a selfing plant species, Medicago truncatula (Leguminosae), shown using RAPD markers. Am J Bot 83:843–855

    Google Scholar 

  • Charlesworth D, Charlesworth B, McVean GAT (2001) Genome sequences and evolutionary biology, a two-way interaction. Trends Ecol Evol 16:235–242

    Article  PubMed  Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kalò P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  CAS  PubMed  Google Scholar 

  • Eyre-Walker A (2002) Changing effective population size and the McDonald-Kreitman test. Genetics 162:2017–2024

    PubMed  Google Scholar 

  • Fay JC, Wu C-I (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413

    CAS  PubMed  Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    CAS  PubMed  Google Scholar 

  • Griffiths RC, Tavaré S (1995) Unrooted genealogical tree probabilities in the infinitely-many-sites model. Math Biosci 127:77–98

    Article  CAS  PubMed  Google Scholar 

  • Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18:337–338

    Article  CAS  PubMed  Google Scholar 

  • Jiggins FM, Hurst GDD, Yang Z (2002) Host-symbiont conflicts: positive selection on an outer membrane protein of parasitic but not mutualistic Rickettsiaceae. Mol Biol Evol 19:1341–1349

    CAS  PubMed  Google Scholar 

  • Jones DA, Jones JDG (1997) The role of leucine-rich repeat proteins in plant defences. Adv Bot Res Adv Plant Pathol 24:89–167

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302:630–633

    Article  CAS  PubMed  Google Scholar 

  • Luck JE, Lawrence GJ, Dodds PN, Shepherd KW, Ellis JG (2000) Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell 12:1367–1377

    Article  CAS  PubMed  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  CAS  PubMed  Google Scholar 

  • McVean G, Awadalla P, Fearnhead P (2002) A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160:1231–1241

    CAS  PubMed  Google Scholar 

  • Nordborg M (2001) Coalescent theory. In: Balding DJ, Bishop M, Cannings C (eds) Handbook of statistical genetics. John Wiley & Sons, Chichester, UK

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    CAS  PubMed  Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    Article  CAS  PubMed  Google Scholar 

  • Richman AD (2000) Evolution of balanced genetic polymorphism. Mol Ecol 9:1953–1963

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinfomatics 19:2496–2497

    CAS  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szcyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  CAS  PubMed  Google Scholar 

  • Swanson WJ, Nielsen R, Yang Q (2003) Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol 20:18–20

    CAS  PubMed  Google Scholar 

  • Tai TH, Tanksley SD (1990) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep 8:297–303

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  Google Scholar 

  • Takahata N (1990) A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc Natl Acad Sci USA 87:2419–2423

    CAS  PubMed  Google Scholar 

  • Van der Hoorn RAL, De Wit PJGM, Joosten MHAJ (2002) Balancing selection favors guarding resistance proteins. Trends Plant Sci 7:67–71

    PubMed  Google Scholar 

  • van Rhijn P, Vanderleyden J (1995) The Rhizobium-plant symbiosis. Microbiol Rev 59:124–142

    PubMed  Google Scholar 

  • Vance CP, Miller SS, Gregerson RG, Samac DA, Robinson DL, Gantt JS (1995) Alfalfa NADHdependent glutamate synthase: structure of the gene and importance in symbiotic N2 fixation. Plant J 8:345–358

    Article  CAS  PubMed  Google Scholar 

  • Wall JD, Hudson RR (2001) Coalescent simulations and statistical tests of neutrality. Mol Biol Evol 18:1134–1135

    CAS  PubMed  Google Scholar 

  • Wong WSW, Yang Z, Goldman N, Nielsen R (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168: 1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Qiu X, Du S, Erickson L (1996) PO149, a new member of pollen pectate lyase-like gene family from alfalfa. Plant Mol Biol 32:1037–1042

    CAS  PubMed  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    CAS  PubMed  Google Scholar 

  • Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503

    Article  PubMed  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen A-MK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    CAS  PubMed  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    CAS  PubMed  Google Scholar 

  • Zhang J (2004) Frequent false detection of positive selection by the likelihood method with branch-site models. Mol Biol Evol 21:1332–1339

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mikkel Schierup, Leif Schauser, Nicolas Galtier, Deborah Charlesworth, and two anonymous reviewers for useful comments on early versions of the manuscript, Nicolas Galtier for helpful discussion, and Ziheng Yang, Wendy Wong, and Rasmus Nielsen for communicating the manuscript before publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane De Mita.

Additional information

[Reviewing Editor: Dr. Deborah Charlesworth]

Sequence data were deposited in the GenBank database under accession nos. AY676428 to AY676457 and AJ884582.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Mita, S., Santoni, S., Hochu, I. et al. Molecular Evolution and Positive Selection of the Symbiotic Gene NORK in Medicago truncatula. J Mol Evol 62, 234–244 (2006). https://doi.org/10.1007/s00239-004-0367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0367-2

Keywords

Navigation