Skip to main content
Log in

Common Evolutionary Origin and Birth-and-Death Process in the Replication-Independent Histone H1 Isoforms from Vertebrate and Invertebrate Genomes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The H1 histone multigene family shows the greatest diversity of isoforms among the five histone gene families, including replication-dependent (RD) and replication-independent (RI) genes, according to their expression patterns along the cell cycle and their genomic organization. Although the molecular characterization of the RI isoforms has been well documented in vertebrates, similar information is lacking in invertebrates. In this work we provide evidence for a polyadenylation signature in the Mytilus “orphon” H1 genes similar to the polyadenylation characteristic of RI H1 genes. These mussel genes, together with the sea urchin H1δ genes, are part of a lineage of invertebrate “orphon” H1 genes that share several control elements with vertebrate RI H1 genes. These control elements include the UCE element, H1-box and H4-box. We provide evidence for a functional evolution of vertebrate and invertebrate RI H1 genes, which exhibit a clustering pattern by type instead of by species, with a marked difference from the somatic variants. In addition, these genes display an extensive silent divergence at the nucleotide level which is always significantly larger than the nonsilent. It thus appears that RI and RD H1 isoforms display similar long-term evolutionary patterns, best described by the birth-and-death model of evolution. Notably, this observation is in contrast with the theoretical belief that clustered RD H1 genes evolve in a concerted manner. The split of the RI group from the main RD group must therefore have occurred before the divergence between vertebrates and invertebrates about 815 million years ago. This was the result of the transposition of H1 genes to solitary locations in the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figure 2
Figure 3
Fig. 4
Figure 5

Similar content being viewed by others

References

  • Albig W, Kioschis P, Poutska A, Meergans K, Doenecke D (1997a) Human histone gene organization: nonregular arrangement within a large cluster Genomics 40:314–322

    Article  Google Scholar 

  • Albig W, Meergans T, Doenecke D (1997b) Characterization of the H1.5 genes completes the set of human H1 subtype genes Gene 184:141–148

    Article  Google Scholar 

  • Ausio J (1999) Histone H1 and evolution of sperm nuclear basic proteins J Biol Chem 274:31115–31118

    Article  PubMed  Google Scholar 

  • Barcia R, Lopez-Garcia JM, Ramos-Martinez JI (1997) The 28S fraction of rRNA in molluscs displays electrophoretic behaviour different from that of mammal cells Biochem Mol Biol Int 42:1089–1092

    PubMed  Google Scholar 

  • Barzotti R, Pelliccia F, Bucciarelli E, Rocchi A (2000) Organization, nucleotide sequence, and chromosomal mapping of a tandemly repeated unit containing the four core histone genes and a 5S rRNA gene in an isopod crustacean species Genome 43:341–345

    Article  PubMed  Google Scholar 

  • Brocard MP, Triebe S, Peretti M, Doenecke D, Khochbin S (1997) Transcription termination and 3’ processing: The end is in site Cell 41:349–359

    Google Scholar 

  • Carlos S, Jutglar L, Borrell I, Hunt DF, Ausió J (1993) Sequence and characterization of a sper-specific histone H1-like protein of Mytilus californianus J Biol Chem 268:185–194

    PubMed  Google Scholar 

  • Chabouté ME, Chaubet N, Gigot C, Philipps G (1993) Histones and histone genes in higher plants: structure and genomic organization Biochimie 75:523–531

    Article  PubMed  Google Scholar 

  • Coen E, Strachan T, Dover GA (1982) Dynamics of concerted evolution of ribosomal DNA and histone gene families in the melanogaster species subgroup of Drosophila J Mol Biol 158:17–35

    Article  PubMed  Google Scholar 

  • del Gaudio R, Potenza N, Stefanoni P, Chiusano ML, Geraci G (1998) Organization and nucleotide sequence of the cluster of five histone genes in the polychaete worm Chaetopterus variopedatus: first record of a H1 histone gene in the phylum annelida J Mol Evol 46:64–73

    PubMed  Google Scholar 

  • Dimitrov S, Almouzni G, Dasso M, Wolffe AP (1993) Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type Dev Biol 160:214–227

    Article  PubMed  Google Scholar 

  • Doenecke D, Alonso A (1996) Organization and expression of the developmentally regulated H1° histone gene in vertebrates Int J Dev Biol 40:395–401

    PubMed  Google Scholar 

  • Doenecke D, Albig W, Bouterfa H, Drabent B (1994) Organization and expression of H1 histone and H1 replacement histone genes J Cell Biochem 54:423–431

    Article  PubMed  Google Scholar 

  • Doenecke D, Albig W, Bode C, Drabent B, Franke K, Gavenis K, Witt O (1997) Histones: genetic diversity and tissue-specific gene expression Histochem Cell Biol 107:1–10

    Article  PubMed  Google Scholar 

  • Eirín-López JM, González-Tizón AM, Martínez A, Méndez J (2002) Molecular and evolutionary analysis of mussel histone genes (Mytilus spp.): possible evidence of an “orphon origin” for H1 histone genes J Mol Evol 55:272–283

    Article  PubMed  Google Scholar 

  • Eirín-López JM, Ruiz MF, González-Tizón AM, Martínez A, Sánchez L, Méndez J (2004a) Molecular evolutionary analysis of the mussel Mytilus histone multigene family: first record of a tandemly repeated unit of five histone genes containing an H1 subtype with “orphon” features J Mol Evol 58:131–144

    Article  Google Scholar 

  • Eirín-López JM, González-Tizón AM, Martínez A, Méndez J (2004b) Birth-and-death evolution with strong purifying selection in the histone H1 multigene family and the origin of “orphon” H1 genes Mol Biol Evol 21:1992–2003

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap Evolution 39:783–791

    Google Scholar 

  • Feng DF, Cho G, Doolittle RS (1997) Determining divergence times with a protein clock: update and reevaluation Proc Natl Acad Sci USA 94:13028–13033

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT Nucl Acids Symp Ser 41:95–98

    Google Scholar 

  • Hankeln T, Schmidt ER (1993) Divergent evolution of an “orphon” histone gene cluster in Chironomus J Mol Biol 234:1301–1307

    Article  PubMed  Google Scholar 

  • Harvey AC, Downs JA (2004) What functions do linker histones provide? Mol Microbiol 53:771–775

    Article  PubMed  Google Scholar 

  • Hentschel CC, Birnstiel ML (1981). The organization and expression of histone gene families Cell 25:301–313

    Article  PubMed  Google Scholar 

  • Holt CA, Childs G (1984) A new family of tandem repetitive early histone genes in the sea urchin Lytechinus pictus: evidence for concerted evolution within tandem arrays Nucleic Acids Res 12:6455–6471

    PubMed  Google Scholar 

  • Isenberg I (1978) Histones. In: Busch H (ed) The cell nucleus. Academic Press, New York, pp 135–154

    Google Scholar 

  • Isenberg I (1979) Histones Annu Rev Genet 48:159–191

    Google Scholar 

  • Kasinsky HE, Lewis JD, Dacks JB, Ausió J (2001) Origin of H1 histones FASEB J 15:34–42

    Article  PubMed  Google Scholar 

  • Kedes L (1979) Histone messengers and histone genes Annu Rev Biochem 48:159–191

    Article  PubMed  Google Scholar 

  • Khochbin S, Wolffe AP (1994) Developmentally regulated expression of linker-histone variants in vertebrates Eur J Biochem 225:501–510

    Article  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: Molecular Evolutionary Genetic Analysis software Bioinformatics 17:1244–1245

    Article  PubMed  Google Scholar 

  • Lever MA, Th’ng JPH, Sun X, Hendzel MJ (2000) Rapid exchange of of histone H1.1 on chromatin in living human cells Nature 408:873–876

    Article  PubMed  Google Scholar 

  • Lieber T, Angerer LM, Angerer LC, Childs G (1988) A histone H1 protein in sea urchins is encoded by poly(A)+ mRNA Proc Natl Acad Sci USA 85:4123–4127

    PubMed  Google Scholar 

  • Marzluff WF (1992) Histone 3’ ends: essential and regulatory functions Gene Express 2:93–97

    Google Scholar 

  • Maxson R, Mohun T, Gormezano G, Childs G, Kedes L (1983) Distinct organizations and patterns of expression of early and late histone gene sets in the sea urchin Nature 301:120–125

    Article  PubMed  Google Scholar 

  • Nei M, Hughes AL (1992) Balanced polymorphism and evolution by the birth-and-death process in the MHC loci. In: Tsuji K, Aizawa M, Sasazuki T (eds) Eleventh histocompatibility workshop and conference. Oxford University Press, Oxford, UK, pp 27–38

    Google Scholar 

  • Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system Proc Natl Acad Sci USA 94:7799–7806

    Article  PubMed  Google Scholar 

  • Nei M, Rogozin IB, Piontkivska H (2000) Purifying selection and birth-and-death evolution in the ubiquitin gene family Proc Natl Acad Sci USA 97:10866–10871

    Article  PubMed  Google Scholar 

  • Ohta T (1983) On the evolution of multigene families Theor Popul Biol 23:216–240

    Article  PubMed  Google Scholar 

  • Ota T, Nei M (1994) Divergent evolution and evolution by the birth-and-death process in the immunoglobulin VH gene family Mol Biol Evol 11:469–482

    PubMed  Google Scholar 

  • Peretti M, Khochbin S (1997) The evolution of the differentiation-specific histone H1 gene basal promoter J Mol Evol 44:128–134

    PubMed  Google Scholar 

  • Piontkivska H, Rooney AP, Nei M (2002) Purifying selection and birth-and-death evolution in the histone H4 gene family Mol Biol Evol 19:689–697

    PubMed  Google Scholar 

  • Poccia DL, Green GR (1992) Packaging and unpackaging the sea urchin sperm genome Trends Biochem Sci 17:223–227

    Article  PubMed  Google Scholar 

  • Ramakrishnan V, Finch JT, Graziano V, Lee PL, Sweet RM (1993) Crystal structure of globular domain of histone H5 and its implications for nucleosome binding Nature 362:219–223

    Article  PubMed  Google Scholar 

  • Rooney AP, Piontkivska H, Nei M (2002) Molecular evolution of the nontandemly repeated genes of the histone 3 multigene family Mol Biol Evol 19:68–75

    PubMed  Google Scholar 

  • Ruiz-Carrillo A, Affolter M, Renaud J (1983) Genomic organization of the genes coding for the six main histones of the chicken: complete sequence of the H5 gene J Mol Biol 170:843–859

    PubMed  Google Scholar 

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees Mol Biol Evol 9:945–967

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees Mol Biol Evol 4:406–425

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Schienman JE, Lozovskaya ER, Strausbaugh LD (1998) Drosophila virilis has atypical kinds and arrangements of histone repeats Chromosoma 107:529–539

    Article  PubMed  Google Scholar 

  • Schulze E, Schulze B (1995) The vertebrate linker histones H1°, H5, and H1M are descendants of invertebrate “orphon” histone H1 genes J Mol Evol 41:833–840

    Article  PubMed  Google Scholar 

  • Simpson RT (1978) Structure of chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones Biochemistry 17:5524–5531

    Article  PubMed  Google Scholar 

  • Sitnikova T (1996) Bootstrap method of interior-branch test for phylogenetic trees Mol Biol Evol 13:605–611

    PubMed  Google Scholar 

  • Sullivan SA, Sink DW, Trout KL, Makalowska I, Taylor PL, Baxevanis AD, Landsman D (2002) The histone database Nucleic Acids Res 30:341–342

    Article  PubMed  Google Scholar 

  • Tanaka M, Hennebold JD, Macfarlane J, Adashi EY (2001) A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (CS–H1) of sea urchin and the B4/H1M histone of the frog Development 128:655–664

    PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools Nucleic Acids Res 25:4876–4882

    Article  PubMed  Google Scholar 

  • Van Wijnen AJ, van Den Ent FMI, Lian JB, Stein JL, Stein GS (1992) Overlapping and CpG methylation-sensitive protein–DNA interaction at the histone H4 transcriptional cell cycle domain: distinctions between two human H4 gene promoters Mol Cell Biol 12:3273–3287

    PubMed  Google Scholar 

  • Wang ZF, Sirotkin AM, Buchold GM, Skoultchi AI, Marzluff WF (1997) The mouse histone H1 genes: gene organization and differential regulation J Mol Biol 271:124–138

    Article  PubMed  Google Scholar 

  • Wolffe AP, Khochbin S, Dimitrov S (1997) What do linker histones do in chromatin? BioEssays 19:249–255

    Article  PubMed  Google Scholar 

  • Zhang J, Rosenberg HF, Nei M (1998) Positive Darwinian selection after gene duplication in primate ribonuclease genes Proc Natl Acad Sci USA 95:3708–3713

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Alejandro Rooney and Dr. Helen Piontkivska for fruitful discussions and comments on an early version of this work. We are also very grateful to Patricia González Greciano, Sergio Casas-Tintó, and Clara Goday at the Departamento de Biología Celular y del Desarrollo, CIB-CSIC, Spain, as well as to Lindsay J. Frehlick at the Department of Biochemistry and Microbiology, University of Victoria, for skillful technical assistance in the lab and for their critical comments. This work was funded by a PGIDT Grant (10PX110304) to J.M., by a Canadian Institutes of Health Research Grant-CIHR (MOP-57718) to J.A., and by a predoctoral FPU fellowship from the Spanish Government awarded to J.M.E.-L. We thank two anonymous reviewers for helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Eirín-López.

Additional information

[Reviewing Editor:Dr. Yves Van de Peer]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eirín-López, J.M., Ruiz, M.F., González-Tizón, A.M. et al. Common Evolutionary Origin and Birth-and-Death Process in the Replication-Independent Histone H1 Isoforms from Vertebrate and Invertebrate Genomes. J Mol Evol 61, 398–407 (2005). https://doi.org/10.1007/s00239-004-0328-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0328-9

Keywords

Navigation