Skip to main content
Log in

Global mRNA Stability Is Not Associated with Levels of Gene Expression in Drosophila melanogaster But Shows a Negative Correlation with Codon Bias

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

A multitude of factors contribute to the regulation of gene expression in living cells. The relationship between codon usage bias and gene expression has been extensively studied, and it has been shown that codon bias may have adaptive significance in many unicellular and multicellular organisms. Given the central role of mRNA in post-transcriptional regulation, we hypothesize that mRNA stability is another important factor associated either with positive or negative regulation of gene expression. We have conducted genome-wide studies of the association between gene expression (measured as transcript abundance in public EST databases), mRNA stability, codon bias, GC content, and gene length in Drosophila melanogaster. To remove potential bias of gene length inherently present in EST libraries, gene expression is measured as normalized transcript abundance. It is demonstrated that codon bias and GC content in second codon position are positively associated with transcript abundance. Gene length is negatively associated with transcript abundance. The stability of thermodynamically predicted mRNA secondary structures is not associated with transcript abundance, but there is a negative correlation between mRNA stability and codon bias. This finding does not support the hypothesis that codon bias has evolved as an indirect consequence of selection favoring thermodynamically stable mRNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akashi H (1994) Synonymous codon usage in Drosophila melanogaster natural selection and translational accuracy. Genetics 136:927–935

    PubMed  Google Scholar 

  • Akashi H (1997) Codon bias evolution in Drosophila. Population genetics of mutation? selection drift, Gene 205:269-278

    Article  PubMed  Google Scholar 

  • Akashi H (2001) Gene expression and molecular evolution. Curr Opin Genet Dev 11:660–666

    Article  PubMed  Google Scholar 

  • Akashi H (2003) Translational selection and yeast proteome evolution, Genetics 164:1291–1303

    PubMed  Google Scholar 

  • Akashi H, Eyre- Walker A (1998) Translational selection and molecular evolution. Curr Opin Genet Dev 8:688–693

    Article  PubMed  Google Scholar 

  • Akashi H, Gojobori T (2002) Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bachilus subtilis, Proc Natl Acad Sci USA 99:3696–3700

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool, J Mol Biol 215:403–410

    Article  PubMed  Google Scholar 

  • Andersson SGE, Kurland CG (1990) Codon preferences in free-living microorganisms, Microbiol Rev 54:198–210

    PubMed  Google Scholar 

  • Antezana MA, Kreitman M (1999) The nonrandom location of synonymous codons suggests that reading frame-independent forces have patterned codon preferences. J Mol Evol 49:36–43

    PubMed  Google Scholar 

  • Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of warm-blooded vertebrates, Science 228;953–958

    PubMed  Google Scholar 

  • Boguski MS, Lowe TM, Tolstoshev CM (1993) dbEST: database for “expressed sequence tags.” Nat Genet 4:332–333

    Article  PubMed  Google Scholar 

  • Bose S, Dutko JA, Zitomer RS (2005) Genetic factors that regulate the attenuation of the general stress response of yeast. Genetics 169:1215–1226

    Article  PubMed  Google Scholar 

  • Brown TA (1999) Genomes, John Wiley & Sons, New York

    Google Scholar 

  • Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage, Genetics 129:897–907

    PubMed  Google Scholar 

  • Carlini DB, Chen Y, Stephan W (2001) The relationship between third-codon position nucleotide content, codon bias, mRNA secondary structure and gene expression in the drosophilid alcohol dehydrogenase genes Adh and Adhr. Genetics 159:623–633

    PubMed  Google Scholar 

  • Chiapello H, Fisacek F, Caboche M, Henaut A (1998) Codon usage and gene function are related in sequences of Arabidopsis thaliana. Gene 209:GC1–GC38

    Article  PubMed  Google Scholar 

  • Coghlan A, Wolfe KH (2000) Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae, Yeast 16:1131–1145

    Article  PubMed  Google Scholar 

  • Comeron JM (2004) Selective and mutational patterns associated with gene expression in humans: influences on synonymous composition and introns presence. Genetics 167:1293–1304

    Article  PubMed  Google Scholar 

  • Comeron JM, Kreitman M (2002) Population, evolutionary and genomic consequences of interference selection. Genetics 161:389–410

    PubMed  Google Scholar 

  • Comeron JM, Kreitman M, Aguadé M (1999) Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics 151:239–249

    PubMed  Google Scholar 

  • Craig EA (1986) The heat shock response, CRC Crit Rev Biochem 18:239–280

    Google Scholar 

  • Doshi KJ, Cannone JJ, Cobaugh CW, Gutell RR (2004) Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinformatics 5:105

    Article  PubMed  Google Scholar 

  • Duan J, Antezana MA (2003) Mammalian mutation pressure, synonymous codon choice, and mRNA degradation, J Mol Evol 57:694–701

    Article  PubMed  Google Scholar 

  • Duret L (2000) tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet 16:287–289

    Article  PubMed  Google Scholar 

  • Duret L, Mouchiroud D (1999) Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsti. Proc Natl Acad Sci USA 96;4482–4487

    Article  PubMed  Google Scholar 

  • Fennoy SL, Bailey-Serres J (1993) Synonymous codon usage in Zea mays L. nuclear genes is varied by levels of C and G-ending codons, Nucleic Acids Res 21:5294–5300

    PubMed  Google Scholar 

  • Francino HP, Ochman H (1999) Isochores result from mutation not selection. Nature 400:30–31

    Article  PubMed  Google Scholar 

  • Gentles AJ, Karlin S (2001) Genome-scale compositional comparisons in eukaryotes. Genome Res 11:540–546

    Article  PubMed  Google Scholar 

  • Gouy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10:7055–7074

    PubMed  Google Scholar 

  • Gouy M, Gautier C, Attimonelli M, Lanave C, di Paola G (1985) ACNUC: portable retrieval system for nucleic acid sequence databases: logical and physical designs and usage. Comput Appl Biosci 1:167–172

    PubMed  Google Scholar 

  • Grunberg-Manago M (1999) Messenger RNA stability and its role in control of gene expression in bacteria and phages, Annu Rev Genet 33:193–227

    Article  PubMed  Google Scholar 

  • Guhaniyogi J, Brewer G (2001) Regulation of mRNA stability in mammalian cells, Gene 265:11–23

    Article  PubMed  Google Scholar 

  • Hey J, Kliman RM (2002) Interactions between natural selection, recombination and gene density in the genes of Drosophila, Genetics 160:595–608

    PubMed  Google Scholar 

  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures, Monatsh Chem 125:167–188

    Article  Google Scholar 

  • Iida K, Akashi H (2000) A test of translational selection at ‘silent’ sites in the human genome: base composition comparisons in alternatively spliced genes, Gene 261:93–105

    Article  PubMed  Google Scholar 

  • Ikemura T (1981a) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol 146:1–21

    Article  Google Scholar 

  • Ikemura T (1981b) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli system, J Mol Biol 151:389–409

    Article  Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms, Mol Biol Evol 2:13–34

    PubMed  Google Scholar 

  • Jenkins GM, Holmes EC (2003) The extent of codon usage bias in human RNA viruses and its evolutionary origin, Virus Res 92:1–7

    Article  PubMed  Google Scholar 

  • Kanaya S, Yamada Y, Kudo Y, Ikemura T (1999) Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs; gene expression level and species-specific diversity of codon usage based on multivariate analysis, Gene 238:143–155

    Article  PubMed  Google Scholar 

  • Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T (2001) Codon usage and tRNA genes in eukaryotes; correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis, J Mol Evol 53:290–298

    Article  PubMed  Google Scholar 

  • Karlin S, Campbell AM, Mrazek J (1998) Comparative DNA analysis across diverse genomes, Annu Rev Genet 32:185–225

    Article  PubMed  Google Scholar 

  • Katz L, Burge CB (2003) Widespread selection for local RNA secondary structure in coding regions of bacterial genes. Genome Res 13:2042–2051

    Article  PubMed  Google Scholar 

  • Kliman RM, Hey J (1993) Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol 10:1239–1258

    PubMed  Google Scholar 

  • Kliman RM, Hey J (1994) The effects of mutation and natural selection on codon bias in the genes of Drosophila, Genetics 137:1049–1056

    PubMed  Google Scholar 

  • Konings DA, Gutell RR (1995) A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNAs. RNA 1:559–574

    PubMed  Google Scholar 

  • Li WH (1987) Models of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons, J Mol Evol 24:337–345

    PubMed  Google Scholar 

  • Marais G, Duret L (2001) Synonymous codon usage, accuracy of translation, and gene length in Caenorhabditis elegans, J Mol Evol 52:275–280

    PubMed  Google Scholar 

  • Margulies EH, Kardia SL, Innis JW (2001) Identification and prevention of a GC content bias in SAGE libraries, Nucleic Acids Res 29:E60

    Article  PubMed  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure, J Mol Biol 288:911–940

    PubMed  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA, Nature 431:343–349

    Article  PubMed  Google Scholar 

  • Miyasaka H (2002) Translation initiation AUG context varies with codon usage bias and gene length in Drosophila melanogaster, J Mol Evol 55:52–64

    Article  PubMed  Google Scholar 

  • Morita MT, Kanemori M, Yanagi H, Yura T (2000) Dynamic interplay between antagonistic pathways controlling for the σ32 level in Escherichia coli, Proc Natl Acad Sci USA 97:5860–5865

    Article  PubMed  Google Scholar 

  • Moriyama EN, Powell JR (1997) Codon usage bias and tRNA abundance in Drosophila. J Mol Evol 45:514–523

    PubMed  Google Scholar 

  • Mount DW (2001) Bioinformatics: sequence and genome analysis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Munoz ET, Bogarad LD, Deem MW (2004) Microarray and EST database estimates of mRNA expression levels differ; the protein length versus expression curve for C. elegans. BMC Genomics 5:30

    Article  PubMed  Google Scholar 

  • Musto H, Cruveiller S, D’Onofrio G, Romero H, Bernardi G (2001) Translational selection on codon usage in Xenopus laevis. Mol Biol Evol 18:1703–1707

    PubMed  Google Scholar 

  • Norusis MJ (2000) SPSS 10.0 guide to data analysis, Prentice Hall, NJ

    Google Scholar 

  • Pervouchine DD, Graber JH, Kasif S (2003) On the normalization of RNA equilibrium free energy to the length of the sequence, Nucleic Acids Res 31:e49

    Article  PubMed  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  PubMed  Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis, Bioinformatics 15:174–175

    PubMed  Google Scholar 

  • Sharp PM, Lloyd AT (1993) Codon usage. In Maroni GP (ed) Atlas of Drosophila genes. Oxford University Press, New York, pp. 378–397

    Google Scholar 

  • Sharp PM, Matassi G (1994) Codon usage and genome evolution, Curr Opin Genet Dev 4:851–860

    Article  PubMed  Google Scholar 

  • Sharp PM, Stenico M, Peden JF, Lloyd AT (1993) Codon usage; mutational bias, translational selection, or both? Biochem Soc Trans 21:835–841

    PubMed  Google Scholar 

  • Sharp PM, Averof M, Lloyd AT, Matassi G, Peden JF (1995) DNA sequence evolution: the sounds of silence, Phi Trans R Soc London B 349:241–247

    Google Scholar 

  • Shields DC, Sharp PM, Higgins DG, Wright F (1988) “Silent” sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol 5:704–716

    PubMed  Google Scholar 

  • Stenico M, Lloyd AT, Sharp PM (1994) Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational bias, Nucleic Acids Res 22:2437–2446

    PubMed  Google Scholar 

  • Stenøien HK (2005) Adaptive basis of codon usage in the haploid moss Physcomitrella patens, Heredity 94:87–93

    Article  PubMed  Google Scholar 

  • Tinoco I, Bustamante C (1999) How RNA folds. J Mol Biol 293:271–281

    Article  PubMed  Google Scholar 

  • Tuite MF (1996) RNA processing: death by decapitation for mRNA, Nature 382:577–579

    Article  PubMed  Google Scholar 

  • Walter AE, Turner DH, Kim J, Lyttle MH, Muller P, Mathews DH, Zuker M (1994) Coaxial stacking of helixes enhances binding of oligonucleotides and improves predictions of RNA folding. Proc Natl Acad Sci USA 91:9218–9222

    PubMed  Google Scholar 

  • Wolfe K, Sharp PM, Li WH (1989) Mutation rates differ among regions of the mammalian genome, Nature 337:283–285

    Article  PubMed  Google Scholar 

  • Zuker M, Mathews DH, Turner DH (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In Barciszewski J, Clark BFC (eds) RNA biochemistry and biotechnology, NATO ASI Series, Kluwer Academic Publishers, pp. 11–43

    Google Scholar 

Download references

Acknowledgments

We thank John Parsch, Martin Kreitman, and anonymous reviewers for helpful comments. This work has been partly supported by the Norwegian Research Council grant no. 134800/410, and partly by the Swedish Research Council grant no. 621-2002-5896.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Stephan.

Additional information

[Reviewing Editor: Dr. Martin Kreitman]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenøien, H.K., Stephan, W. Global mRNA Stability Is Not Associated with Levels of Gene Expression in Drosophila melanogaster But Shows a Negative Correlation with Codon Bias. J Mol Evol 61, 306–314 (2005). https://doi.org/10.1007/s00239-004-0271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0271-9

Keywords

Navigation