Skip to main content

Advertisement

Log in

Predicted Secondary Structure for 28S and 18S rRNA from Ichneumonoidea (Insecta: Hymenoptera: Apocrita): Impact on Sequence Alignment and Phylogeny Estimation

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We utilize the secondary structural properties of the 28S rRNA D2–D10 expansion segments to hypothesize a multiple sequence alignment for major lineages of the hymenopteran superfamily Ichneumonoidea (Braconidae, Ichneumonidae). The alignment consists of 290 sequences (originally analyzed in Belshaw and Quicke, Syst Biol 51:450–477, 2002) and provides the first global alignment template for this diverse group of insects. Predicted structures for these expansion segments as well as for over half of the 18S rRNA are given, with highly variable regions characterized and isolated within conserved structures. We demonstrate several pitfalls of optimization alignment and illustrate how these are potentially addressed with structure-based alignments. Our global alignment is presented online at (http://hymenoptera.tamu.edu/rna) with summary statistics, such as basepair frequency tables, along with novel tools for parsing structure-based alignments into input files for most commonly used phylogenetic software. These resources will be valuable for hymenopteran systematists, as well as researchers utilizing rRNA sequences for phylogeny estimation in any taxon. We explore the phylogenetic utility of our structure-based alignment by examining a subset of the data under a variety of optimality criteria using results from Belshaw and Quicke (2002) as a benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Supplementary Material 1.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Supplementary Material 2.
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • D Amako O-Y Kwon H Ishikawa (1996) ArticleTitleNucleotide sequence and presumed secondary structure of the 28S rRNA of pea aphid: Implication for diversification of insect rRNA J Mol Evol 4 469–475

    Google Scholar 

  • SW Applebaum RP Ebstein GR Wyatt (1966) ArticleTitleDissociation of ribosomal ribonucleic acid from silkmoth pupae by heat and dimethylsulfoxide: Evidence for specific cleavage points J Mol Biol 21 29–41 Occurrence Handle10.1016/0022-2836(66)90077-5 Occurrence Handle5338995

    Article  PubMed  Google Scholar 

  • I Bakke S Johansen (2002) ArticleTitleCharacterization of mitochondrial ribosomal RNA genes in gadiformes: Sequence variations, secondary structural features, and phylogenetic implications Mol Phylogenet Evol 25 87–100 Occurrence Handle10.1016/S1055-7903(02)00220-8 Occurrence Handle12383753

    Article  PubMed  Google Scholar 

  • I Balazas M Agosin (1968) ArticleTitleIsolation and characterization of ribonucleic acid from Musca domestica (L) Comp Biochem Physiol 27 227–237 Occurrence Handle10.1016/0010-406X(68)90766-4 Occurrence Handle5758370

    Article  PubMed  Google Scholar 

  • R Belshaw DLJ Quicke (1997) ArticleTitleA molecular phylogeny of the Aphidiinae (Hymenoptera: Braconidae) Mol Phylogenet Evol 7 281–293 Occurrence Handle10.1006/mpev.1996.0400 Occurrence Handle9187088

    Article  PubMed  Google Scholar 

  • R Belshaw DLJ Quicke (2002) ArticleTitleRobustness of ancestral state estimates: Evolution of life history strategy in ichneumonoid parasitoids Syst Biol 51 450–477 Occurrence Handle10.1080/10635150290069896 Occurrence Handle12079644

    Article  PubMed  Google Scholar 

  • R Belshaw M Fitton E Herniou C Gimeno DLJ Quicke (1998) ArticleTitleA phylogenetic reconstruction of the Ichneumonoidea (Hymenoptera) based on the D2 variable region of 28 ribosomal RNA Syst Biol 23 109–123

    Google Scholar 

  • R Belshaw M Dowton DLJ Quicke AD Austin (2000) ArticleTitleEstimating ancestral geographical distributions: a Gondwanan origin for aphid parasitoids? Proc R Soc Lond B 267 491–496 Occurrence Handle10.1098/rspb.2000.1027

    Article  Google Scholar 

  • JJ Cannone S Subramanian MN Schnare JR Collett LM D’Souza Y Du B Feng N Lin LV Madabusi KM Müller N Pande Z Shang N Yu RR Gutell (2002) ArticleTitleThe comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs BMC Bioinformatics 3 2 Occurrence Handle10.1186/1471-2105-3-2 Occurrence Handle11869452

    Article  PubMed  Google Scholar 

  • CO Cunningham H Aliesky CM Collins (2000) ArticleTitleSequence and secondary structure variation in the Gyrodactylus (Platyhelminthes: Monogenea) ribosomal RNA gene array J Parasitol 86 567–576 Occurrence Handle10864256

    PubMed  Google Scholar 

  • G Lanversin ParticleDe B Jacq (1989) ArticleTitleSequence and secondary structure of the central domain of Drosophila 26S rRNA: A universal model for the central domain of the large rRNA containing the region in which the central break may happen J Mol Evol 28 403–417 Occurrence Handle2501502

    PubMed  Google Scholar 

  • P DeRijk Y Peer ParticleVan de S Chapelle R Wachter ParticleDe (1994) ArticleTitleDatabase on the structure of large ribosomal subunit RNA Nucleic Acids Res 22 3495–3501 Occurrence Handle7524023

    PubMed  Google Scholar 

  • P DeRijk Y Peer ParticleVan de I Broeck ParticleVan den R Wachter ParticleDe (1995) ArticleTitleEvolution according to large ribosomal subunit RNA J Mol Evol 41 366–375 Occurrence Handle10.1007/BF01215184 Occurrence Handle7563123

    Article  PubMed  Google Scholar 

  • P DeRijk Y Peer ParticleVan de R Wachter ParticleDe (1997) ArticleTitleDatabase on the structure of the large ribosomal RNA Nucleic Acids Res 25 117–123 Occurrence Handle10.1093/nar/25.1.117 Occurrence Handle9016517

    Article  PubMed  Google Scholar 

  • MT Dixon DM Hillis (1993) ArticleTitleRibosomal secondary structure: Compensatory mutations and implications for phylogenetic analysis Mol Biol Evol 10 256–267 Occurrence Handle8450759

    PubMed  Google Scholar 

  • EA Doherty RT Batey B Masquida JA Doudna (2001) ArticleTitleA universal mode of packing in RNA Nat Struct Biol 8 339–343 Occurrence Handle10.1038/86221 Occurrence Handle11276255

    Article  PubMed  Google Scholar 

  • KJ Doshi JJ Cannone CW Cobaugh RR Gutell (2004) ArticleTitleEvaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction BMC Bioinformatics 5 105 Occurrence Handle10.1186/1471-2105-5-105 Occurrence Handle15296519

    Article  PubMed  Google Scholar 

  • E Douzery FM Catzeflis (1995) ArticleTitleMolecular evolution of the mitochondrial 12S rRNA in Ungulata (Mammalia) J Mol Evol 41 622–636 Occurrence Handle10.1007/BF00175821 Occurrence Handle7490777

    Article  PubMed  Google Scholar 

  • M Dowton AD Austin (2001) ArticleTitleSimultaneous analysis of 16S, 28S, COI and morphology in the Hymenoptera: Apocrita—evolutionary transitions among parasitic wasps Biol J Linn Soc 74 87–111 Occurrence Handle10.1006/bijl.2001.0577

    Article  Google Scholar 

  • T Elgavish JJ Cannone JC Lee SC Harvey RR Gutell (2001) ArticleTitleAA.AG@Helix.Ends: A:A and A:G base-pairs at the ends of 16S and 23S rRNA helices J Mol Biol 310 735–753 Occurrence Handle10.1006/jmbi.2001.4807 Occurrence Handle11453684

    Article  PubMed  Google Scholar 

  • DS Fields RR Gutell (1996) ArticleTitleAn analysis of large rRNA sequences folded by a thermodynamic method Fold Des 1 419–430 Occurrence Handle10.1016/S1359-0278(96)00058-2 Occurrence Handle9080188

    Article  PubMed  Google Scholar 

  • H Fujiwara H Ishikawa (1986) ArticleTitleMolecular mechanisms of introduction of the hidden break into the 28S rRNA of insects: Implication based on structural studies Nucleic Acids Res 14 6393–6401 Occurrence Handle3018670

    PubMed  Google Scholar 

  • PP Gardner R Giegerich (2004) ArticleTitleA comprehensive comparison of comparative RNA structure prediction approaches BMC Bioinformatics 5 140 Occurrence Handle10.1186/1471-2105-5-140 Occurrence Handle15458580

    Article  PubMed  Google Scholar 

  • J Gatesy C Hayashi R DeSalle E Vrba (1994) ArticleTitleRate limits for pairing and compensatory change: The mitochondrial ribosomal DNA of antelopes Evolution 48 188–196

    Google Scholar 

  • ID Gauld (2002) ArticleTitleThe Ichneumonidae of Costa Rica, 4 Mem Am Ent Inst 66 1–768

    Google Scholar 

  • SA Gerbi (1985) Evolution of ribosomal DNA RJ Maclntyre (Eds) Molecular evolutionary genetics Plenum New York 419–517

    Google Scholar 

  • JJ Gillespie (2004) ArticleTitleCharacterizing regions of ambiguous alignment caused by the expansion and contraction of hairpin-stem loops in ribosomal RNA molecules Mol Phylogenet Evol 33 936–943 Occurrence Handle10.1016/j.ympev.2004.08.004 Occurrence Handle15522814

    Article  PubMed  Google Scholar 

  • JJ Gillespie KM Kjer CN Duckett DW Tallamy (2003) ArticleTitleConvergent evolution of cucurbitacin feeding in spatially isolated rootworm taxa (Coleoptera: Chrysomelidae; Galerucinae, Luperini) Mol Phylogenet Evol 29 161–175 Occurrence Handle10.1016/S1055-7903(03)00256-2 Occurrence Handle12967617

    Article  PubMed  Google Scholar 

  • JJ Gillespie KM Kjer ER Riley DW Tallamy (2004a) The evolution of cucurbitacin pharmacophagy in rootworms: Insight from Luperini paraphyly PH Jolivet JA Santiago-Blay M Schmitt (Eds) New developments on the biology of Chrysomelidae Kluwer Academic Boston, MA 37–58

    Google Scholar 

  • JJ Gillespie JJ Cannone RR Gutell AI Cognato (2004b) ArticleTitleA secondary structural model of the 28S rRNA expansion segments D2 and D3 from rootworms and related leaf beetles (Coleoptera; Chrysomelidae; Galerucinae) Insect Mol Biol 13 495–518 Occurrence Handle10.1111/j.0962-1075.2004.00509.x

    Article  Google Scholar 

  • JJ Gillespie J Munro J Heraty M Yoder A Owen A Carmichael (2005) ArticleTitleA secondary structural model of the 28S rRNA expansion segments D2 and D3 for chalcidoid wasps (Hymenoptera: Chalcidoidea) Mol Biol Evol 22 1593–1608 Occurrence Handle10.1093/molbev/msi152 Occurrence Handle15843598

    Article  PubMed  Google Scholar 

  • Gladstein DS, Wheeler WC (1997) POY: The optimization of alignment characters. Program and documentation. Available at: ftp.amnh.org/pub/molecular

    Google Scholar 

  • JR Greenberg (1969) ArticleTitleSynthesis and properties of ribosomal RNA in Drosophila J Mol Biol 46 85–98 Occurrence Handle10.1016/0022-2836(69)90059-X Occurrence Handle5358644

    Article  PubMed  Google Scholar 

  • P Gonzalez J Labarere (2000) ArticleTitlePhylogenetic relationships of Pleurotus species according to the sequence and secondary structure of the mitochondrial small-subunit rRNA V4, V6 and V9 domains Microbiology 146 209–221 Occurrence Handle10658667

    PubMed  Google Scholar 

  • RR Gutell (1992) Evolutionary characteristics of 16S and 23S rRNA structures H Hartman K Matsuno (Eds) The origin and evolution of prokaryotic and eukaryotic cells World Scientific Hackensack, NJ 243–309

    Google Scholar 

  • RR Gutell (1993) ArticleTitleCollection of Small Subunit (16S- and 16S-like) ribosomal RNA structures Nucleic Acids Res 21 3051–3054 Occurrence Handle8332526

    PubMed  Google Scholar 

  • RR Gutell (1994) ArticleTitleCollection of Small Subunit (16S- and 16S-like) ribosomal RNA structures: 1994 Nucleic Acids Res 22 3502–3507 Occurrence Handle7524024

    PubMed  Google Scholar 

  • RR Gutell (1996) Comparative sequence analysis and the structure of 16S and 23S rRNA AE Dahlberg RA Zimmerman (Eds) Ribosomal RNA: Structure, evolution, processing and function in protein synthesis CRC Press Boca Raton, FL 111–128

    Google Scholar 

  • RR Gutell GE Fox (1988) ArticleTitleA compilation of large subunit RNA sequences presented in a structural format Nucleic Acids Res 16S r175–r269

    Google Scholar 

  • RR Gutell B Weiser CR Woese HF Noller (1985) ArticleTitleComparative anatomy of 16S-like ribosomal RNA Prog Nucleic Acid Res Mol Biol 32 155–216 Occurrence Handle3911275

    PubMed  Google Scholar 

  • RR Gutell MN Schnare MW Gray (1990) ArticleTitleA compilation of large subunit (23S-like) ribosomal RNA sequences presented in a secondary structure format Nucleic Acids Res 188 2319–2330

    Google Scholar 

  • RR Gutell A Power G Hertz E Putz G Stormo (1992a) ArticleTitleIdentifying constraints on the higher-order structure of RNA: Continued development and application of comparative sequence analysis methods Nucleic Acids Res 20 5785–5795

    Google Scholar 

  • RR Gutell MN Schnare MW Gray (1992b) ArticleTitleA compilation of large subunit (23S- and 23S-like) ribosomal RNA structures Nucleic Acids Res 21S 3055–3074

    Google Scholar 

  • RR Gutell MW Gray MN Schnare (1993) ArticleTitleA compilation of large subunit (23S- and 23S-like) ribosomal RNA structures Nucleic Acids Res 20S 2095–2109

    Google Scholar 

  • RR Gutell N Larsen CR Woese (1994) ArticleTitleLessons from an evolving rRNA: 168 and 23S rRNA structures from a comparative perspective Microbiol Rev 58 10–26 Occurrence Handle8177168

    PubMed  Google Scholar 

  • RR Gutell JJ Cannone Z Shang Y Du MJ Serra (2000) ArticleTitleA story: Unpaired adenosine bases in ribosomal RNAs J Mol Biol 304 335–354 Occurrence Handle10.1006/jmbi.2000.4172 Occurrence Handle11090278

    Article  PubMed  Google Scholar 

  • RR Gutell JC Lee JJ Cannone (2002) ArticleTitleThe accuracy of ribosomal RNA comparative structure models Curr Opin Struct Biol 12 301–310 Occurrence Handle10.1016/S0959-440X(02)00339-1 Occurrence Handle12127448

    Article  PubMed  Google Scholar 

  • K Han H-J Kim (1993) ArticleTitlePrediction of common folding structures of homologous RNAs Nucleic Acids Res 21 1251–1257 Occurrence Handle7681944

    PubMed  Google Scholar 

  • JM Hancock GA Dover (1988) ArticleTitleMolecular coevolution among cryptically simple expansion segments of eukaryotic 26S/28S rRNAs Mol Biol Evol 5 377–392 Occurrence Handle3405077

    PubMed  Google Scholar 

  • JM Hancock AP Vogler (2000) ArticleTitleHow slippage-derived sequences are incorporated into rRNA variable-region secondary structure: Implications for phylogeny reconstruction Mol Phylogenet Evol 14 366–374 Occurrence Handle10.1006/mpev.1999.0709 Occurrence Handle10712842

    Article  PubMed  Google Scholar 

  • RE Hickson C Simon A Cooper GS Spicer J Sullivan D Penny (1996) ArticleTitleConserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA Mol Biol Evol 13 150–169 Occurrence Handle8583888

    PubMed  Google Scholar 

  • RE Hickson C Simon SW Perrey (2000) ArticleTitleThe performance of several multiple-sequence alignment programs in relation to secondary-structure features for an rRNA sequence Mol Biol Evol 17 530–539 Occurrence Handle10742045

    PubMed  Google Scholar 

  • DM Hillis MT Dixon (1991) ArticleTitleRibosomal DNA: Molecular evolution and phylogenetic inference Q Rev Biol 66 411–453 Occurrence Handle10.1086/417338 Occurrence Handle1784710

    Article  PubMed  Google Scholar 

  • IL Hofacker PF Stadler (1999) ArticleTitleAutomatic detection of conserved base-pairing patterns in RNA virus genomes Comp Chem 23 401–414 Occurrence Handle10.1016/S0097-8485(99)00013-3

    Article  Google Scholar 

  • IL Hofacker M Fekete C Flamm MA Huynen S Rauscher PE Stolorz PF Stadler (1998) ArticleTitleAutomatic detection of conserved RNA structure elements in complete RNA virus genomes Nucleic Acids Res 26 3825–3836 Occurrence Handle10.1093/nar/26.16.3825 Occurrence Handle9685502

    Article  PubMed  Google Scholar 

  • CV Hudelot V Gowri-shankar H Jow M Rattray PG Higgs (2003) ArticleTitleRNA-based phylogenetic methods: Application to mammalian mitochondrial RNA sequences Mol Phylogenet Evol 28 241–252 Occurrence Handle10.1016/S1055-7903(03)00061-7 Occurrence Handle12878461

    Article  PubMed  Google Scholar 

  • JP Huelsenbeck FR Ronquist (2001) ArticleTitleMrBayes: Bayesian inference of phylogeny Bioinformatics 17 754–755 Occurrence Handle10.1093/bioinformatics/17.8.754 Occurrence Handle11524383

    Article  PubMed  Google Scholar 

  • JP Huelsenbeck B Larget RE Miller F Ronquist (2002) ArticleTitlePotential applications and pitfalls of Bayesian inference of phylogeny Syst Biol 51 673–688 Occurrence Handle10.1080/10635150290102366 Occurrence Handle12396583

    Article  PubMed  Google Scholar 

  • SK Hwang JG Kim (2000) ArticleTitleSecondary structure and phylogenetic implications of nuclear large subunit ribosomal RNA in the ectomycorrhizal fungus Tricholoma matsutake Curr Microbiol 40 250–256 Occurrence Handle10.1007/s002849910050 Occurrence Handle10688694

    Article  PubMed  Google Scholar 

  • UI Hwang W Kim D Tautz M Friedrich (1998) ArticleTitleMolecular phylogenetics at the Felsenstein zone: Approaching the Strepsiptera problem using 5.8S and 28S rDNA sequences Mol Phylogenet Evol 9 470–480 Occurrence Handle10.1006/mpev.1998.0518 Occurrence Handle9667995

    Article  PubMed  Google Scholar 

  • H Ishikawa RW Newburgh (1972) ArticleTitleStudies of thermal conversion of 28S RNA of Galleria mellonella (L) to an 18S product J Mol Biol 64 135–144 Occurrence Handle10.1016/0022-2836(72)90325-7 Occurrence Handle5015395

    Article  PubMed  Google Scholar 

  • H Ishikawa (1977) ArticleTitleEvolution of ribosomal RNA Comp Biochem Physiol B 58 1–7 Occurrence Handle10.1016/0305-0491(77)90116-X Occurrence Handle400949

    Article  PubMed  Google Scholar 

  • H Jow C Hudelot M Rattay PG Higgs (2002) ArticleTitleBayesian phylogenetics using an RNA substitution model applied to early mammalian evolution Mol Biol Evol 19 1591–1601 Occurrence Handle12200486

    PubMed  Google Scholar 

  • V Juan C Wilson (1999) ArticleTitleRNA secondary structure prediction based on free energy and phylogenetic analysis J Mol Biol 289 935–947 Occurrence Handle10.1006/jmbi.1999.2801 Occurrence Handle10369773

    Article  PubMed  Google Scholar 

  • TH Jukes CR Cantor (1969) Evolution of protein molecules NH Munro (Eds) Mammalian protein metabolism Academic New York 21–132

    Google Scholar 

  • KM Kjer (1995) ArticleTitleUse of rRNA secondary structure in phylogenetic studies to identify homologous positions: An example of alignment and data presentation from the frogs Mol Phylogenet Evol 4 314–330 Occurrence Handle10.1006/mpev.1995.1028 Occurrence Handle8845967

    Article  PubMed  Google Scholar 

  • KM Kjer (1997) ArticleTitleAn alignment template for amphibian 12S rRNA, domain III: Conserved primary and secondary structural motifs J Herpetol 31 599–604

    Google Scholar 

  • KM Kjer (2004) ArticleTitleAligned 18S and insect phylogeny Syst Biol 53 506–514 Occurrence Handle10.1080/10635150490445922 Occurrence Handle15503677

    Article  PubMed  Google Scholar 

  • KM Kjer GD Baldridge AM Fallon (1994) ArticleTitleMosquito large subunit ribosomal RNA; Simultaneous alignment of primary and secondary structure Biochim Biophys Acta 1217 147–155 Occurrence Handle8110829

    PubMed  Google Scholar 

  • KM Kjer RJ Blahnik RW Holzenthal (2001) ArticleTitlePhylogeny of Trichoptera (Caddisflies): Characterization of signal and noise within multiple datasets Syst Biol 50 781–816 Occurrence Handle10.1080/106351501753462812 Occurrence Handle12116634

    Article  PubMed  Google Scholar 

  • KM Kjer RJ Blahnik RW Holzenthal (2002) ArticleTitlePhylogeny of caddisflies (Insecta: Trichoptera) Zool Scripta 31 83–91 Occurrence Handle10.1046/j.0300-3256.2001.00079.x

    Article  Google Scholar 

  • DJ Klein TM Schmeing PB Moore TA Steitz (2001) ArticleTitleThe kink-turn: A new RNA secondary structure motif EMBO J 20 4214–4221 Occurrence Handle10.1093/emboj/20.15.4214 Occurrence Handle11483524

    Article  PubMed  Google Scholar 

  • DAM Konings RR Gutell (1995) ArticleTitleA comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNAs RNA 1 559–574 Occurrence Handle7489516

    PubMed  Google Scholar 

  • F Kraus L Jarecki M Miyamoto S Tanhauser P Laipis (1992) ArticleTitleMispairing and compensational changes during the evolution of mitochondrial ribosomal RNA Mol Biol Evol 9 770–774 Occurrence Handle1378523

    PubMed  Google Scholar 

  • S-Y Le M Zuker (1991) ArticleTitlePredicting common foldings of homologous RNAs J Biomol Struct Dyn 8 1027–1044 Occurrence Handle1715169

    PubMed  Google Scholar 

  • G Levinson GA Gutman (1987) ArticleTitleSlipped-strand mispairing: A major mechanism for DNA sequence evolution Mol Biol Evol 4 203–221 Occurrence Handle3328815

    PubMed  Google Scholar 

  • R Lück G Steger D Riesner (1996) ArticleTitleThermodynamic prediction of conserved secondary structure: Application to the RRE element of HIV, the tRNA-like element of CMV, and the mRNA of prion protein J Mol Biol 258 813–826 Occurrence Handle10.1006/jmbi.1996.0289 Occurrence Handle8637012

    Article  PubMed  Google Scholar 

  • R Lück S Gräf G Steger (1999) ArticleTitleConstruct: A tool for thermodynamic controlled prediction of conserved secondary structure Nucleic Acids Res 27 4208–4217 Occurrence Handle10.1093/nar/27.21.4208 Occurrence Handle10518612

    Article  PubMed  Google Scholar 

  • F Lutzoni P Wagner V Reeb (2000) ArticleTitleIntegrating ambiguously aligned regions of DNA sequences in phylogenetic analyses using unequivocal coding and optimal character-state weighting Syst Biol 49 628–651 Occurrence Handle10.1080/106351500750049743 Occurrence Handle12116431

    Article  PubMed  Google Scholar 

  • C Lydeard WE Holznagel MN Schnare RR Gutell (2000) ArticleTitlePhylogenetic analysis of molluscan mitochondrial LSU rDNA sequences and secondary structures Mol Phylogenet Evol 15 83–102 Occurrence Handle10.1006/mpev.1999.0719 Occurrence Handle10764537

    Article  PubMed  Google Scholar 

  • M Manuel C Borchiellini E Alivon Y Le Parco J Vacelet N Boury-Esnault (2003) ArticleTitlePhylogeny and evolution of calcareous sponges: Monophyly of Calcinea and Calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry Syst Biol 52 311–333 Occurrence Handle12775522

    PubMed  Google Scholar 

  • DH Mathews J Sabina M Zuker DH Turner (1999) ArticleTitleExpanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure J Mol Biol 288 911–940 Occurrence Handle10329189

    PubMed  Google Scholar 

  • B Michot N Hassouna J-P Bachellerie (1984) ArticleTitleSecondary structure of mouse 28S rRNA and general model for the folding of the large rRNA in eukaryotes Nucleic Acids Res 12 4259–4279 Occurrence Handle6374617

    PubMed  Google Scholar 

  • RE Miller A McDonald PS Manos (2004) ArticleTitleSystematics of Ipomoea subgenus Quamoclit (Convovulaceae) based on its sequence data and a Bayesian phylogenetic analysis Am J Bot 91 1208–1218

    Google Scholar 

  • B Misof G Fleck (2003) ArticleTitleComparative analysis of mt LSU rRNA secondary structures of odonates: Structural variability and phylogenetic signal Insect Mol Biol 12 535–547 Occurrence Handle10.1046/j.1365-2583.2003.00432.x Occurrence Handle14986915

    Article  PubMed  Google Scholar 

  • L Morin (2000) ArticleTitleLong branch attraction effects and the status of “basal eukaryotes”: Phylogeny and structural analysis of the ribosomal RNA gene cluster of the free-living diplomonad Trepomonas agilis J Eukaryot Microbiol 47 167–177 Occurrence Handle10.1111/j.1550-7408.2000.tb00028.x Occurrence Handle10750846

    Article  PubMed  Google Scholar 

  • DA Morrison JT Ellis (1997) ArticleTitleEffects of nucleotide sequence alignment on phylogeny estimation: A case study of 18S rDNAs of Apicomplexa Mol Biol Evol 14 428–441 Occurrence Handle9100373

    PubMed  Google Scholar 

  • NB Mugridge DA Morrison AM Johnson K Luton J Dubey J Votypka AM Tenter (1999) ArticleTitlePhylogenetic relationships of the genus Frenkelia: A review of its history and new knowledge gained from comparison of large subunit ribosomal ribonucleic acid gene sequences Int J Parasitol 29 957–972 Occurrence Handle10.1016/S0020-7519(99)00062-4 Occurrence Handle10480733

    Article  PubMed  Google Scholar 

  • W Musters VJ Venema G Linden ParticleVan der H Heerikhuizen Particlevan J Klootwijk RJ Planta (1989) ArticleTitleA system for the analysis of yeast ribosomal DNA mutations Mol Cell Biol 9 551–559 Occurrence Handle2540422

    PubMed  Google Scholar 

  • W Musters PM Goncalves K Boon HA Raue H Heerikhuizen Particlevan RJ Planta (1991) ArticleTitleThe conserved GTPase center and variable region V9 from Saccharomyces cerevisiae 26 rRNA can be replaced by their equivalents from other prokaryotes or eukaryotes without detectable loss of ribosomal function Proc Natl Acad Sci USA 88 1469–1473 Occurrence Handle1996347

    PubMed  Google Scholar 

  • MA Nedbal MW Allard RL Honeycutt (1994) ArticleTitleMolecular systematics of hystricognath rodents: Evidence from the mitochondrial 12S rRNA gene Mol Phylogenet Evol 3 206–220 Occurrence Handle10.1006/mpev.1994.1023 Occurrence Handle7820285

    Article  PubMed  Google Scholar 

  • P Nissen JA Ippolito N Ban PB Moore TA Steitz (2001) ArticleTitleRNA tertiary interactions in the large ribosomal subunit: The A-minor motif Proc Natl Acad Sci USA 98 4899–4903 Occurrence Handle10.1073/pnas.081082398 Occurrence Handle11296253

    Article  PubMed  Google Scholar 

  • HP Noller J Kop V Wheaton J Brosius RR Gutell AM Kopylov F Dohme W Herr DA Stahl R Gupta CR Woese (1981) ArticleTitleSecondary structure model for 23S ribosomal RNA Nucleic Acids Res 9 6167–6189 Occurrence Handle7031608

    PubMed  Google Scholar 

  • HF Noller BJ Stolk ParticleVan D Moazed S Douthwaite RR Gutell (1985) ArticleTitleStudies on the structure and function of 16S ribosomal RNA using structure-specific chemical probes Proc Int Symp Biomol Struct Interact Suppl J Biosci 8 747–755

    Google Scholar 

  • C Notredame EA O’Brien DG Higgins (1997) ArticleTitleRAGA: RNA sequence alignment by genetic algorithm Nucleic Acids Res 25 4570–4580 Occurrence Handle10.1093/nar/25.22.4570 Occurrence Handle9358168

    Article  PubMed  Google Scholar 

  • K Ogino H Edafujiwara H Fujiwara H Ishikawa (1990) ArticleTitleWhat causes the aphid 28S ribosomal RNA to lack the hidden break? J Mol Evol 30 509–513 Occurrence Handle2115929

    PubMed  Google Scholar 

  • G Ortí P Petry JIR Porto M Jégu A Meyer (1996) ArticleTitlePatterns of nucleotide change in mitochondrial ribosomal RNA genes and the phylogeny of piranhas J Mol Evol 42 169–182 Occurrence Handle8919869

    PubMed  Google Scholar 

  • RDM Page (2000) ArticleTitleComparative analysis of insect mitochondrial small subunit ribosomal RNA using maximum weighted matching Nucleic Acids Res 28 3839–3845 Occurrence Handle10.1093/nar/28.20.3839 Occurrence Handle11024161

    Article  PubMed  Google Scholar 

  • Y-J Park AM Fallon (1990) ArticleTitleMosquito ribosomal RNA genes: Characterization of gene structure and evidence for changes in copy number during development Insect Biochem 20 1–11 Occurrence Handle10.1016/0020-1790(90)90016-N

    Article  Google Scholar 

  • G Petersen O Seberg L Aagesen S Frederiksen (2004) ArticleTitleAn empirical test of the treatment of indels during optimization alignment based on the phylogeny of the genus Secale (Poaceae) Mol Phylogenet Evol 30 733–742 Occurrence Handle10.1016/S1055-7903(03)00206-9 Occurrence Handle15012951

    Article  PubMed  Google Scholar 

  • D Posada K Crandall (1998) ArticleTitleMODELTEST: Testing the model of DNA substitution Bioinformatics 14 817–818 Occurrence Handle10.1093/bioinformatics/14.9.817 Occurrence Handle9918953

    Article  PubMed  Google Scholar 

  • Rambaut A, Drummond AJ (2004) Tracer v1,1. Available at: http://evolve,zoo.ox,ac.uk/

  • OJ Rimoldi B Raghu MK Mag GL Eliceiri (1993) ArticleTitleThree new small nucleolar RNAs that are psoralen cross-linked in vivo to unique regions of pre-rRNA Mol Cell Biol 13 4382–4390 Occurrence Handle8391637

    PubMed  Google Scholar 

  • F Ronquist JP Huelsenbeck (2003) ArticleTitleMRBAYES 3: Bayesian phylogenetic inference under mixed models Bioinformatics 19 1572–1574 Occurrence Handle10.1093/bioinformatics/btg180 Occurrence Handle12912839

    Article  PubMed  Google Scholar 

  • F Rousset M Pelandakis M Solignac (1991) ArticleTitleEvolution of compensatory substitutions through GU intermediate state in Drosophila rRNA Proc Natl Acad Sci USA 88 10032–10036 Occurrence Handle1946420

    PubMed  Google Scholar 

  • MN Schnare SH Damberger MW Gray RR Gutell (1996) ArticleTitleComprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23S-like) ribosomal RNA J Mol Biol 256 701–719 Occurrence Handle10.1006/jmbi.1996.0119 Occurrence Handle8642592

    Article  PubMed  Google Scholar 

  • EA Schultes PT Hraber TH LaBean (1999) ArticleTitleEstimating the contributions of selection and organization in RNA secondary structure J Mol Evol 49 76–83 Occurrence Handle10368436

    PubMed  Google Scholar 

  • MR Shaw T Huddleston (1991) ArticleTitleClassification and biology of braconid wasps (Hymenoptera: Braconidae), Handbk Identif British Insects J Mol Biol 75 57–72

    Google Scholar 

  • J Shine L Dalgarno (1973) ArticleTitleOccurrence of heat-dissociable ribosomal RNA in insects: Presence of 3 polynucleotide chains in 26S RNA from cultured Aedes aegypti cells J Mol Biol 75 57–72 Occurrence Handle10.1016/0022-2836(73)90528-7 Occurrence Handle4197338

    Article  PubMed  Google Scholar 

  • M Simmons (2004) ArticleTitleIndependence of alignment and tree search Mol Phylogenet Evol 31 874–879 Occurrence Handle10.1016/j.ympev.2003.10.008 Occurrence Handle15120385

    Article  PubMed  Google Scholar 

  • MS Springer E Douzery (1996) ArticleTitleSecondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules J Mol Evol 43 357–373 Occurrence Handle8798341

    PubMed  Google Scholar 

  • MS Springer LJ Hollar A Burk (1995) ArticleTitleCompensatory substitutions and the evolution of the mitochondrial 12S rRNA gene in mammals Mol Biol Evol 12 1138–1150 Occurrence Handle8524047

    PubMed  Google Scholar 

  • R Sweeney M-C Yao (1989) ArticleTitleIdentifying functional regions of rRNA by insertion mutagenesis and complete gene replacement in Tetrahymena thermophila EMBO J 8 933–938 Occurrence Handle2542027

    PubMed  Google Scholar 

  • R Sweeney L Chen M-C Yao (1994) ArticleTitleAn rRNA variable region has an evolutionary conserved essential role despite sequence divergence Mol Cell Biol 14 4203–4215 Occurrence Handle8196658

    PubMed  Google Scholar 

  • DL Swofford (1999) PAUP*; Phylogenetic analysis using parsimony (*and other methods), version 4 Sinauer Sunderland, MA

    Google Scholar 

  • DJ Tauz JM Hancock DA Webb C Tautz GA Dover (1988) ArticleTitleComplete sequences of the rRNA genes of Drosophila melanogaster Mol Biol Evol 5 366–376 Occurrence Handle3136294

    PubMed  Google Scholar 

  • TA Titus DR Frost (1996) ArticleTitleMolecular homology assessment and phylogeny in the lizard family Opluridae (Squamata: Iguania) Mol Phylogenet Evol 6 49–62 Occurrence Handle10.1006/mpev.1996.0057 Occurrence Handle8812305

    Article  PubMed  Google Scholar 

  • H Uchida K Kitae KI Tomizawa A Yokota (1998) ArticleTitleComparison of the nucleotide sequence and secondary structure of the 5.8S ribosomal RNA gene of Chlamydomonas tetrasama with those of green algae DNA Seq 8 403–408 Occurrence Handle10728826

    PubMed  Google Scholar 

  • Y Peer ParticleVan de J Jansen P Rijk ParticleDe R Wachter ParticleDe (1997) ArticleTitleDatabase on the structure of small ribosomal subunit RNA Nucleic Acids Res 5 111–116 Occurrence Handle10.1093/nar/25.1.111

    Article  Google Scholar 

  • Y Peer ParticleVan de E Robbrecht S Hoog Particlede A Caers P Rijk ParticleDe (1999) ArticleTitleDatabase on the structure of small subunit ribosomal RNA Nucleic Acids Res 27 l79–183 Occurrence Handle10.1093/nar/27.1.79

    Article  Google Scholar 

  • L Vawter WM Brown (1993) ArticleTitleRates and patterns of base change in the small subunit ribosomal RNA gene Genetics 134 597–608 Occurrence Handle8325490

    PubMed  Google Scholar 

  • GM Veldman J Klootwijk VCFH Regt ParticleDe RJ Planta C Branlant A Krol J-P Ebel (1981) ArticleTitleThe primary and secondary structure of yeast 26S rRNA Nucleic Acids Res 9 6935–6952 Occurrence Handle7335496

    PubMed  Google Scholar 

  • VC Ware R Renkawitz SA Gerbi (1985) ArticleTitlerRNA processing: removal of only nineteen bases at the gap between 28S alpha and 28S beta rRNAs in Sciara coprophila Nucleic Acids Res 13 3581–3597 Occurrence Handle2989775

    PubMed  Google Scholar 

  • RA Wharton (2000) Can braconid classification be reconstructed to facilitate portrayal of relationships? AD Austin M Dowton (Eds) Hymenoptera evolution, biodiversity and biological control CSIRO Collingwood 143–153

    Google Scholar 

  • WC Wheeler (1996) ArticleTitleOptimization alignment: The end of multiple sequence alignment in phylogenetics? Cladistics 12 1–9 Occurrence Handle10.1111/j.1096-0031.1996.tb00189.x

    Article  Google Scholar 

  • WC Wheeler (1999) ArticleTitleFixed character states and the optimization of molecular sequence data Cladistics 15 379–385 Occurrence Handle10.1111/j.1096-0031.1999.tb00274.x

    Article  Google Scholar 

  • WC Wheeler RL Honeycutt (1988) ArticleTitlePaired sequence difference in ribosomal RNAs: Evolutionary and phylogenetic implications Mol Biol Evol 5 90–96 Occurrence Handle3357414

    PubMed  Google Scholar 

  • BM Wiegmann SC Tsaur DW Webb DK Yeates BK Cassel (2000) ArticleTitleMonophyly and relationships of the Tabanomorpha (Diptera: Brachycera) based on 28S ribosomal gene sequences Ann Entomol Soc Am 93 1031–1038

    Google Scholar 

  • CR Woese LJ Magrum R Gupta RB Siegel DA Stahl J Kop N Crawford J Brosius R Gutell JJ Hogan HF Noller (1980) ArticleTitleSecondary structure model for bacterial 16S ribosomal RNA: Phylogenetic, enzymatic and chemical evidence Nucleic Acids Res 8 2275–2293 Occurrence Handle6159576

    PubMed  Google Scholar 

  • CR Woese R Gutell R Gupta HF Noller (1983) ArticleTitleDetailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids Microbiol Rev 47 621–669 Occurrence Handle6363901

    PubMed  Google Scholar 

  • IG Wool (1986) Studies of the structure of eukaryotic (mammalian) ribosomes J Hardesty G Kramer (Eds) Structure, function and genetics of ribosomes Springer-Verlag New York 391–411

    Google Scholar 

  • J Wuyts P Rijk ParticleDe Y Peer ParticleVan de G Pison P Rousseeuw R Wachter ParticleDe (2000) ArticleTitleComparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA Nucleic Acids Res 28 4698–4708 Occurrence Handle10.1093/nar/28.23.4698 Occurrence Handle11095680

    Article  PubMed  Google Scholar 

  • X Xia (2000) ArticleTitlePhylogenetic relationship among horseshoe crab species: The effect of substitution models on phylogenetic analyses Syst Biol 49 87–100 Occurrence Handle10.1080/10635150050207401 Occurrence Handle12116485

    Article  PubMed  Google Scholar 

  • X Xia Z Xie KM Kjer (2003) ArticleTitle18S ribosomal RNA and tetrapod phylogeny Syst Biol 52 283–295 Occurrence Handle12775520

    PubMed  Google Scholar 

  • DS Yu K Horstmann (1997) ArticleTitleA catalogue of World Ichneumonidae (Hymenoptera). Part 1. Subfamilies Acaenitinae to Ophioninae Mem Am Ent Inst 58 1–763

    Google Scholar 

  • M Zuker JA Jaeger DH Turner (1991) ArticleTitleA comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison Nucleic Acids Res 19 2707–2714 Occurrence Handle1710343

    PubMed  Google Scholar 

  • M Zuker DH Mathews DH Turner (1999) Algorithms and thermodynamics for RNA secondary structure prediction: A practical guide J Barciszewski BFC Clark (Eds) RNA biochemistry and biotechnology NATO ASI Series, Kluwer Academic Boston, MA 11–43

    Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for helpful comments on the manuscript. We are grateful to Markus Friedrich and Karl Kjer for providing unpublished structural alignments for Holometabola and Odonata, respectively. Invaluable discussions with Robin Gutell and Jamie Cannone contributed greatly to the the manuscript. M.J.Y. thanks the online Perlmonks community for assistance in Perl-related questions. J.J.G. is especially grateful to Anthony Cognato for start-up funds provided by the TAMU Entomology Department. Particular thanks go to Jim Whitfield for providing supercomputer time and Andy Deans for helping to run MrBayes analyses. This project was funded in part by NSF Grant DEB-0328922 awarded to R.A.W. and DEB-0328920 awarded to Anthony Cognato.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph J. Gillespie.

Additional information

Access to on-line data: http://hymenoptera.tamu.edu/rna; username, ichs; password, ichzzz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillespie, J.J., Yoder, M.J. & Wharton, R.A. Predicted Secondary Structure for 28S and 18S rRNA from Ichneumonoidea (Insecta: Hymenoptera: Apocrita): Impact on Sequence Alignment and Phylogeny Estimation. J Mol Evol 61, 114–137 (2005). https://doi.org/10.1007/s00239-004-0246-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0246-x

Keywords

Navigation