Skip to main content
Log in

Gene Organization Features in A/T-Rich Organisms

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Several species have genomes in which the four nucleotides are not equally represented (Glöckner 2000). Interestingly, shifts to very high A/T or G/C levels can occur in several distinct branches of the tree of life. The underlying reasons for these shifts therefore may be of different origin. Now entire chromosome sequences from two different A/T-rich genomes, Dictyostelium discoideum and Plasmodium falciparum, are available (Bowman et al. 1999; Gardner et al. 2002; Glöckner et al. 2002). This gives us the opportunity to investigate how a high A/T content may influence the signals that are the landmarks for gene specification. We found that, in contrast with most known metazoan and plant genomes, splice signals contain, little information other than the canonical GT–AG dinucleotides. Intron lengths in A/T rich organisms, on the other hand, are comparable to those of other lower eukaryotes. Intergenic regions show, dependent on the orientation of adjacent genes, a size pattern with a ratio of 1 (3′–3′) to 2 (3′–5′) to 3 (5′–5′). Overall, gene organization patterns seem not to be influenced by the A/T bias. Surprisingly, the slightly higher A/T content of the P. falciparum genome compared to that of D. discoideum (80.1 versus 77.4%) is not achieved by increased A/T richness in intergenic regions. Instead both the shift of the nucleotide usage in coding regions to A/T-rich codons and the longer intergenic regions make an equal contribution to the higher A/T content in this organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • InstitutionalAuthorNameThe Arabidopsis thaliana Genome Initiative (2000) ArticleTitleAnalysis of the genome sequence of the flowering plant Arabidopsis thaliana Nature 408 796–815

    Google Scholar 

  • SL Baldauf WF Doolittle (1997) ArticleTitleOrigin and evolution of the slime molds (Mycetozoa) Proc Natl Acad Sci USA 94 12007–12012 Occurrence Handle10.1073/pnas.94.22.12007 Occurrence Handle1:CAS:528:DyaK2sXntFSmsb8%3D Occurrence Handle9342353

    Article  CAS  PubMed  Google Scholar 

  • SL Baldauf AJ Roger I Wenk-Siefert WF Doolittle (2000) ArticleTitleA kingdom-level phylogeny of eukaryotes based on combined protein data Science 290 972–977 Occurrence Handle10.1126/science.290.5493.972 Occurrence Handle1:CAS:528:DC%2BD3cXnvVWksL0%3D Occurrence Handle11062127

    Article  CAS  PubMed  Google Scholar 

  • E Blanco G Parra R Guigo (2003) Using GeneID to identify genes A Baxevanis (Eds) Current protocols in bioinformatics John Wiley & Sons New York

    Google Scholar 

  • S Bowman D Lawson D Basham et al. (1999) ArticleTitleThe complete nucleotide sequence of chromosome 3 of Plasmodium falciparum Nature 400 532–538

    Google Scholar 

  • C Burge S Karlin (1997) ArticleTitlePrediction of complete gene structures in human genomic DNA J Mol Biol 268 78–94 Occurrence Handle10.1006/jmbi.1997.0951 Occurrence Handle1:CAS:528:DyaK2sXjtlSqtL4%3D Occurrence Handle9149143

    Article  CAS  PubMed  Google Scholar 

  • CB Burge T Tuschl PS Sharp (1999) Splicing precursors to mRNAs by the splicesomes RF Gesteland TR Cech JF Atkins (Eds) The RNA world Cold Springer Harbor Laboratory Press Cold Spring Harbor, NY 525–560

    Google Scholar 

  • M Burset R Guigo (1996) ArticleTitleEvaluation of gene structure prediction programs Genomics 34 353–367

    Google Scholar 

  • M Deutsch M Long (1999) ArticleTitleIntron-exon structures of eukaryotic model organisms Nucleic Acids Res 27 3219–3228

    Google Scholar 

  • GR Fink (1987) ArticleTitlePseudogenes in yeast? Cell 49 5–6

    Google Scholar 

  • M Fuhrmann W Oertel P Hegemann (1999) ArticleTitleA synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii Plant J 19 353–361

    Google Scholar 

  • MJ Gardner N Hall E Fung O White M Berriman RW Hyman JM Carlton A Pain KE Nelson S Bowman IT Paulsen K James JA Eisen K Rutherford SL Salzberg A Craig S Kyes MS Chan V Nene SJ Shallom B Suh J Peterson S Angiuoli M Pertea J Alien J Selengut D Haft MW Mather AB Vaidya DM Martin AH Fairlamb MJ Fraunholz DS Roos SA Ralph GI McFadden LM Cummings GM Subramanian C Mungall JC Venter DJ Carucci SL Hoffman C Newbold RW Davis CM Fraser B Barrell (2002) ArticleTitleGenome sequence of the human malaria parasite Plasmodium falciparum Nature 419 498–511 Occurrence Handle10.1038/nature01097 Occurrence Handle1:CAS:528:DC%2BD38XnsFais7Y%3D Occurrence Handle12368864

    Article  CAS  PubMed  Google Scholar 

  • AJ Gentles S Karlin (2001) ArticleTitleGenome-scale compositional comparisons in eukaryotes Genome Res 11 540–564

    Google Scholar 

  • G Glöckner (2000) ArticleTitleLarge scale sequencing and analysis of AT rich eukaryote genomes Curr Genomics 1 289–299

    Google Scholar 

  • G Glöckner L Eichinger K Szafranski JA Pachebat AT Bankier PH Dear R Lehmann C Baumgart G Parra JF Abril R Guigo K Kumpf DGS Consortium E Cox MA Quail M Platzer A Rosenthal AA Noegel (2002) ArticleTitleSequence and analysis of chromosome 2 of Dictyostelium discoideum Nature 418 79–85

    Google Scholar 

  • A Goffeau BG Barrell H Bussey RW Davis B Dujon H Feldmam F Galibert JD Hoheisel C Jacq M Johnston EJ Louis HW Mewes Y Murakami P Philippsen H Tettelin SG Oliver (1996) ArticleTitleLife with 6000 genes Science 274 563–567

    Google Scholar 

  • R Guigo (1999) DNA composition, codon usage and exon prediction M Bishop (Eds) Genetic databases Academic Press San Diego, CA 53–80

    Google Scholar 

  • N Hall A Pain M Berriman C Churcher B Harris D Harris K Mungall S Bowman R Atkin S Baker A Barron K Brooks CO Buckee C Burrows I Cherevach C Chillingworth T Chillingworth Z Christodoulou L Clark R Clark C Corton A Cronin R Davies P Davis P Dear F Dearden J Doggett T Feltwell A Goble I Goodhead R Gwilliam N Hamlin Z Hance D Harper H Hauser T Hornsby S Holroyd P Horrocks S Humphray K Jagels KD James D Johnson A Kerhornou A Knights B Konfortov S Kyes N Larke D Lawson N Lennard A Line M Maddison J McLean P Mooney S Moule L Murphy K Oliver D Ormond C Price MA Quail E Rabbinowitsch MA Rajandream S Rutter KM Rutherford M Sanders M Simmonds K Seeger S Sharp R Smith R Squares S Squares K Stevens K Taylor A Tivey L Unwin S Whitehead J Woodward JE Sulston A Craig C Newbold BG Barrell (2002) ArticleTitleSequence of Plasmodium falciparum chromosomes 1, 3–9 and 13 Nature 419 527–531

    Google Scholar 

  • PM Hooper H Zhang DS Wishart (2000) ArticleTitlePrediction of genetic structure in eukaryotic DNA using reference point logistic regression and sequence alignment Bioinformatics 16 425–438

    Google Scholar 

  • N Jareborg E Birney R Durbin (1999) ArticleTitleComparative analysis of noncoding regions of 77 orthologous mouse and human gene pairs Genome Res 9 815–824 Occurrence Handle10.1101/gr.9.9.815 Occurrence Handle1:CAS:528:DyaK1MXmslKgs78%3D Occurrence Handle10508839

    Article  CAS  PubMed  Google Scholar 

  • S Karlin (2001) ArticleTitleDetecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes Trends Microbiol 9 335–443 Occurrence Handle10.1016/S0966-842X(01)02079-0 Occurrence Handle1:CAS:528:DC%2BD3MXlsFKntb8%3D Occurrence Handle11435108

    Article  CAS  PubMed  Google Scholar 

  • EV Kriventseva MS Gelfand (1999) ArticleTitleStatistical analysis of the exon-intron structure of higher and lower eukaryote genes J Biomol Struct Dyn 17 281–228

    Google Scholar 

  • V Makarov (2002) ArticleTitleComputer programs for eukaryotic gene prediction Brief Bioinform 3 195–199

    Google Scholar 

  • C Mathe MF Sagot T Schiex P Rouze (2002) ArticleTitleCurrent methods of gene prediction, their strengths and weaknesses Nucleic Acids Res 30 4103–117

    Google Scholar 

  • T Mourier DC Jeffares (2003) ArticleTitleEukaryotic intron loss Science 300 1393

    Google Scholar 

  • G Parra E Blanco R Guigo (2000) ArticleTitleGeneID in Drosophila Genome Res 10 511–515

    Google Scholar 

  • MG Reese G Hartzell NL Harris U Ohler JF Abril SE Lewis (2000) ArticleTitleGenome annotation assessment in Drosophila melanogaster Genome Res 10 483–501

    Google Scholar 

  • F Rivero (2002) ArticleTitlemRNA processing in Dictyostelium: Sequence requirements for termination and splicing Protist 153 169–176

    Google Scholar 

  • S Rogic AK Mackworth FB Ouellette (2001) ArticleTitleEvaluation of gene-finding programs on mammalian sequences Genome Res 11 817–832 Occurrence Handle10.1101/gr.147901 Occurrence Handle1:CAS:528:DC%2BD3MXjs1Wmurc%3D Occurrence Handle11337477

    Article  CAS  PubMed  Google Scholar 

  • A Sakurai S Fujimori H Kochiwa S Kitamura-Abe T Washio R Saito P Carninci Y Hayashizaki M Tomita (2002) ArticleTitleOn biased distribution of introns in various eukaryotes Gene 300 89–95

    Google Scholar 

  • SL Salzberg M Pertea AL Delcher MJ Gardner H Tettelin (1999) ArticleTitleInterpolated Markov models for eukaryotic gene finding Genomics 59 24–31

    Google Scholar 

  • V Wood R Gwilliam MA Rajandream et al. (2002) ArticleTitleThe genome sequence of Schizosaccharomyces pombe Nature 415 871–880 Occurrence Handle10.1038/nature724

    Article  Google Scholar 

  • MQ Zhang (2002) ArticleTitleComputational prediction of eukaryotic protein-coding genes Nat Rev Genet 3 698–709

    Google Scholar 

Download references

Acknowledgment

We thank Matthias Platzer for carefully revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Glöckner.

Additional information

Reviewing Editor: Dr. Manyuan Long

Appendix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szafranski, K., Lehmann, R., Parra, G. et al. Gene Organization Features in A/T-Rich Organisms. J Mol Evol 60, 90–98 (2005). https://doi.org/10.1007/s00239-004-0201-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0201-2

Keywords

Navigation