Skip to main content

Advertisement

Log in

A Novel Additional Group II Intron Distinguishes the Mitochondrial rps3 Gene in Gymnosperms

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Comparative analysis of the ribosomal protein S3 gene (rps3) in the mitochondrial genome of Cycas with newly sequenced counterparts from Magnolia and Helianthus and available sequences from higher plants revealed that the positional clustering with the genes for ribosomal protein S19 (rps19) and L16 (rpl16) is preserved in gymnosperms. However, in contrast to the other land plant species, the rps3 gene in Cycas mitochondria is unique in possessing a second intron: rps3i2. Reverse transcription–polymerase chain reaction (RT-PCR) analysis of the transcripts generated from the rps19rps3rpl16 cluster in Cycas mitochondria demonstrated that the genes are cotranscribed and extensively modified by RNA editing and that both introns are efficiently spliced. Despite remarkable size heterogeneity, the Cycas rps3i1 can be shown to be homologous to the group IIA introns present within the rps3 gene of algae and land plants, including Magnolia and Helianthus. Conversely, sequences similar to the rps3i2 have not been reported previously. On the basis of conserved primary and secondary structure the second intervening sequence interrupting the Cycas rps3 gene has been classified as a group II intron. The close relationship of the rps3i2 to a group of different plant mitochondrial introns is intriguing and suggestive of a mitochondrial derivation for this novel intervening sequence. Interestingly, the rps3i2 appears to be conserved at the same gene location in other gymnosperms. Furthermore, the pattern of the rps3i2 distribution among algae and land plants provides evidence for the evolutionary acquisition of this novel intron in gymnosperms via intragenomic transposition or retrotransposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • KL Adams JD Palmer (2003) ArticleTitleEvolution of mitochondrial gene content: gene loss and transfer to the nucleus Mol Phylogenet Evol 29 380–395 Occurrence Handle10.1016/S1055-7903(03)00194-5 Occurrence Handle1:CAS:528:DC%2BD3sXovVWntbo%3D Occurrence Handle14615181

    Article  CAS  PubMed  Google Scholar 

  • SF Altschul TL Madden AA Schaffer J Zhang Z Zhang W Miller DJ Lipman (1997) ArticleTitleGapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucleic Acids Res 25 3389–3402 Occurrence Handle1:CAS:528:DyaK2sXlvFyhu7w%3D Occurrence Handle9254694

    CAS  PubMed  Google Scholar 

  • U Bergthorsson KL Adams B Thomason JD Palmer (2003) ArticleTitleWidespread horizontal transfer of mitochondrial genes in flowering plants Nature 424 197–201 Occurrence Handle10.1038/nature01743 Occurrence Handle1:CAS:528:DC%2BD3sXlt1Ckt7g%3D Occurrence Handle12853958

    Article  CAS  PubMed  Google Scholar 

  • JN Betley MC Frith JH Graber S Choo JO Deshler (2002) ArticleTitleA ubiquitous and conserved signal for RNA localization in chordates Curr Biol 12 1756–1761

    Google Scholar 

  • S Beckert S Steinhauser H Muhle V Knoop (1999) ArticleTitleA molecular phylogeny of bryophytes based on nucleotide sequences of the mitochondrial nad5 gene Plant Syst Evol 218 179–192 Occurrence Handle1:CAS:528:DC%2BD3cXpt12guw%3D%3D

    CAS  Google Scholar 

  • H Bock A Brennicke W Schuster (1994) ArticleTitleRps3 and rpl16 genes do not overlap in Oenothera mitochondria: GTG as a potential translation initiation codon in plant mitochondria? Plant Mol Biol 24 811–818

    Google Scholar 

  • Y Cho YL Qiu P Kuhlman JD Palmer (1998) ArticleTitleExplosive invasion of plant mitochondria by a group I intron Proc Natl Acad Sci USA 95 14244–14249 Occurrence Handle10.1073/pnas.95.24.14244 Occurrence Handle1:CAS:528:DyaK1cXns1Gmu7s%3D Occurrence Handle9826685

    Article  CAS  PubMed  Google Scholar 

  • JJ Doyle JL Doyle (1990) ArticleTitleIsolation of plant DNA from fresh tissue Focus 12 13–15

    Google Scholar 

  • MW Gray (2003) ArticleTitleDiversity and evolution of mitochondrial RNA Editing systems IUBMB Life 55 227–233

    Google Scholar 

  • H Handa (2003) ArticleTitleThe complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana Nucleic Acids Res 31 5907–5916 Occurrence Handle10.1093/nar/gkg795 Occurrence Handle1:CAS:528:DC%2BD3sXotVCltr0%3D Occurrence Handle14530439

    Article  CAS  PubMed  Google Scholar 

  • D Higgins J Thompson T Gibson JD Thompson DG Higgins TJ Gibson (1994) ArticleTitleCLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res 22 4673–4680 Occurrence Handle1:CAS:528:DyaK2MXitlSgu74%3D Occurrence Handle7984417

    CAS  PubMed  Google Scholar 

  • SA Kelchner (2000) ArticleTitleThe evolution of noncoding chloroplast DNA and its application in plant systematics Ann Missouri Bot Gard 87 482–498

    Google Scholar 

  • V Knoop S Kloska A Brennicke (1994) ArticleTitleOn the identification of group II introns in nucleotide sequence data J Mol Biol 242 389–396

    Google Scholar 

  • B Knudsen JJ Hein (1999) ArticleTitleUsing stochastic context free grammars and molecular evolution to predict RNA secondary structure Bioinformatics 15 446–454

    Google Scholar 

  • T Kubo S Nishizawa A Sugawara N Itchoda A Estiati T Mikami (2000) ArticleTitleThe complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNACys (GCA) Nucleic Acids Res 28 2571–2576 Occurrence Handle10.1093/nar/28.13.2571 Occurrence Handle1:CAS:528:DC%2BD3cXlvFWqsLg%3D Occurrence Handle10871408

    Article  CAS  PubMed  Google Scholar 

  • R Kumar (1995) Mitochondrial ribosomes and their proteins BibInstitutionalEditorNameLeving III CS, Vasil IK (Eds) The molecular biology of plant mitochondria Kluwer Academic Dordrecht 131–138

    Google Scholar 

  • S Kumar K Tamura IB Jakobsen M Nei (2001) ArticleTitleMEGA2: Molecular Evolutionary Genetics Analysis software Bioinformatics 17 1244–1245 Occurrence Handle10.1093/bioinformatics/17.12.1244 Occurrence Handle1:CAS:528:DC%2BD38XmtVCktQ%3D%3D Occurrence Handle11751241

    Article  CAS  PubMed  Google Scholar 

  • J Laroche J Bousquet (1999) ArticleTitleEvolution of the mitochondrial rps3 intron in perennial and annual angiosperms and homology to nad5 intron 1 Mol Biol Evol 16 441–452

    Google Scholar 

  • J Laroche P Li L Maggia J Bousquet (1997) ArticleTitleMolecular evolution of angiosperm mitochondrial introns and exons Proc Natl Acad Sci USA 94 5722–5727

    Google Scholar 

  • K Lehmann U Schmidt (2003) ArticleTitleGroup II introns: structure and catalytic versatility of large natural ribozymes Crit Rev Biochem Mol Biol 38 249–303

    Google Scholar 

  • MZ Lu AE Szmidt XR Wang (1998) ArticleTitleRNA editing in gymnosperms and its impact on the evolution of the mitochondrial cox1 gene Plant Mol Biol 37 225–234

    Google Scholar 

  • O Malek A Brennicke V Knoop (1997) ArticleTitleEvolution of trans-splicing plant mitochondrial introns in pre-Permian times Proc Natl Acad Sci USA 94 553–558 Occurrence Handle10.1073/pnas.94.2.553 Occurrence Handle1:CAS:528:DyaK2sXnslegtg%3D%3D Occurrence Handle9012822

    Article  CAS  PubMed  Google Scholar 

  • F Michel K Umesono H Oseki (1989) ArticleTitleComparative and functional anatomy of group II catalytic introns—A review Gene 82 5–30

    Google Scholar 

  • V Morawala-Patell JM Gualberto L Lamattina JM Grienenberger G Bonnard (1998) ArticleTitleCis- and trans-splicing and RNA editing are required for the expression of nad2 in wheat mitochondria Mol Gen Genet 258 503–511

    Google Scholar 

  • KB Nicholas HB Nicholas SuffixJr DW Deerfield SuffixII (1997) ArticleTitleGeneDoc: analysis and visualization of genetic variation EMBNEW.NEWS 4 14

    Google Scholar 

  • Y Notsu S Masood N Nishikawa N Kubo G Akiduki M Nakazono A Hirai K Kadowaki (2002) ArticleTitleThe complete sequence of the rice (Oriza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants Mol Genet Genomics 268 434–445 Occurrence Handle10.1007/s00438-002-0767-1 Occurrence Handle1:CAS:528:DC%2BD38XptlWltb0%3D Occurrence Handle12471441

    Article  CAS  PubMed  Google Scholar 

  • K Oda K Yamoto E Ohta Y Nakamura M Takemura N Nozato K Akashi T Kanegae Y Ogura T Kohchi K Ohyama (1992) ArticleTitleGene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA J Mol Biol 223 1–7 Occurrence Handle1:CAS:528:DyaK3sXhvVCls7s%3D Occurrence Handle1731062

    CAS  PubMed  Google Scholar 

  • K Ohyama K Oda E Ohta M Takemura (1993) Gene organization and evolution of introns of a liverwort, Marchantia polymorpha, mitochondrial genome A Brennicke U Kuck (Eds) Plant mitochondria Verlag Chemie Weinheim, Germany 115–129

    Google Scholar 

  • WR Pearson DJ Lipman (1988) ArticleTitleImproved tools for biological sequence comparison Proc Natl Acad Sci USA 85 2444–2448 Occurrence Handle1:CAS:528:DyaL1cXktFyit78%3D Occurrence Handle3162770

    CAS  PubMed  Google Scholar 

  • G Perrotta TMR Regina LR Ceci C Quagliariello (1996) ArticleTitleConserved organization of the mitochondrial nad3 and rps12 genes over evolutionarily distant angiosperms Mol Gen Genet 251 326–337

    Google Scholar 

  • KM Pryer H Schneider AR Smith R Cranfill PG Wolf JS Hunt SD Sipes (2001) ArticleTitleHorsetails and ferns are a monophyletic group and the closest living relatives to seed plants Nature 409 618–622 Occurrence Handle10.1038/35054555 Occurrence Handle1:STN:280:DC%2BD3M7islSntw%3D%3D Occurrence Handle11214320

    Article  CAS  PubMed  Google Scholar 

  • D Pruchner S Beckert H Muhle V Knoop (2002) ArticleTitleDivergent intron conservation in the mitochondrial nad2 gene: signatures for the three bryophyte classes (mosses, liverworts, and hornworts) and the lycophytes J Mol Evol 55 265–271 Occurrence Handle10.1007/s00239-002-2324-2 Occurrence Handle1:CAS:528:DC%2BD38XmtlGhs7g%3D Occurrence Handle12187380

    Article  CAS  PubMed  Google Scholar 

  • D Pruchner B Nassal M Schindler V Knoop (2001) ArticleTitleMosses share mitochondrial group II introns with flowering plants, not with liverworts Mol Genet Genomics 266 608–613

    Google Scholar 

  • PZ Qin AM Pyle (1998) ArticleTitleThe architectural organization and mechanistic function of group II intron structural elements Curr Opin Struct Biol 8 301–308

    Google Scholar 

  • Y-L Qiu JD Palmer (2004) ArticleTitleMany independent origins of trans splicing of a plant mitochondrial group II intron J Mol Evol 59 80–89

    Google Scholar 

  • Y-L Qiu Y Cho JC Cox JD Palmer (1998) ArticleTitleThe gain of three mitochondrial introns identifies liverworts as the earliest land plants Nature 394 671–674 Occurrence Handle10.1038/29286 Occurrence Handle1:CAS:528:DyaK1cXlsFKmsLY%3D Occurrence Handle9716129

    Article  CAS  PubMed  Google Scholar 

  • HS Rai HE O’Brien PA Reeves RG Olmstead SW Graham (2003) ArticleTitleInference of higher-order relationships in the cycads from a large chloroplast data set Mol Phylogenet Evol 29 350–359

    Google Scholar 

  • M Robinson-Rechavi D Huchon (2000) ArticleTitleRRTree: relative-rate tests between groups of sequences on a phylogenetic tree Bioinformatics 16 296–297 Occurrence Handle10.1093/bioinformatics/16.3.296 Occurrence Handle1:CAS:528:DC%2BD3cXksFaisr4%3D Occurrence Handle10869026

    Article  CAS  PubMed  Google Scholar 

  • J Sambroock DW Russel (2001) Molecular cloning A laboratory manual EditionNumber3 Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY

    Google Scholar 

  • H Sánchez T Fester S Kloska W Schroder W Schuster (1996) ArticleTitleTransfer of rps19 to the nucleus involves the gain of an RNP-binding motif which may functionally replace RPS13 in Arabidopsis mitochondria EMBO J 15 2138–2149 Occurrence Handle1:CAS:528:DyaK28XjtFyjtr8%3D Occurrence Handle8641279

    CAS  PubMed  Google Scholar 

  • P Sandoval G Leon I Gomez R Carmona P Figueroa L Holuigue A Araya X Jordana (2004) ArticleTitleTransfer of RPS14 and RPL5 from the mitochondrion to the nucleus in grasses Gene 324 139–147 Occurrence Handle10.1016/j.gene.2003.09.027 Occurrence Handle1:CAS:528:DC%2BD3sXpvFeqt7c%3D Occurrence Handle14693379

    Article  CAS  PubMed  Google Scholar 

  • DGJM Scheepers H Luo M Boutry (2001) ArticleTitleVariant mitochondrial transcripts of a broad bean line are associated with two point mutations located upstream of nad5 exon c Plant Sci 129 203–212

    Google Scholar 

  • M Turmel C Otis C Lemieux (2003) ArticleTitleThe mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants Plant Cell 15 1888–1903 Occurrence Handle10.1105/tpc.013169 Occurrence Handle1:CAS:528:DC%2BD3sXms1Wlsbg%3D Occurrence Handle12897260

    Article  CAS  PubMed  Google Scholar 

  • M Unseld JR Marienfeld P Bret A Brennicke (1997) ArticleTitleThe mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides Nature Genet 15 57–61 Occurrence Handle1:CAS:528:DyaK2sXjsFSiuw%3D%3D Occurrence Handle8988169

    CAS  PubMed  Google Scholar 

  • JA Wahleithner JL MacFarlane DR Wolstenholme (1990) ArticleTitleA sequence encoding a maturase-related protein in a group II intron of a plant mitochondrial nad1 gene Proc Natl Acad Sci USA 87 548–552 Occurrence Handle1:CAS:528:DyaK3cXhslegtbs%3D Occurrence Handle2300546

    CAS  PubMed  Google Scholar 

  • H Won S Renner (2003) ArticleTitleHorizontal gene transfer from flowering plants to Gnetum Proc Natl Acad Sci USA 100 10824–10829 Occurrence Handle10.1073/pnas.1833775100 Occurrence Handle1:CAS:528:DC%2BD3sXnslynt7o%3D Occurrence Handle12963817

    Article  CAS  PubMed  Google Scholar 

  • S Zanlungo V Quinones A Moenne L Holuigue X Jordana (1995) ArticleTitleSplicing and editing of rps10 transcripts in potato mitochondria Curr Genet 27 565–571 Occurrence Handle10.1007/BF00314449 Occurrence Handle1:CAS:528:DyaK2MXmslegtL4%3D Occurrence Handle7553943

    Article  CAS  PubMed  Google Scholar 

  • M Zuker (2003) ArticleTitleMfold web server for nucleic acid folding and hybridization prediction Nucleic Acids Res 31 3406–3415 Occurrence Handle10.1093/nar/gkg595 Occurrence Handle1:CAS:528:DC%2BD3sXltVWisr8%3D Occurrence Handle12824337

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

T.M.R.R. is the recipient of a postdoctoral fellowship from Italian Ministero dell’Istruzione, Università e Ricerca (MIUR). E.P. is the recipient of a fellowship from the Plant Biology Ph.D. Programme of the Università degli Studi della Calabria. The financial support of the Università degli Studi della Calabria and the Italian MIUR (Progetti di Rilevante Interesse Nazionale/1999) is gratefully acknowledged. The authors thank the anonymous reviewers for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Quagliariello.

Additional information

Reviewing Editor: Dr. Rafael Zardoya

Appendix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regina, T.M., Picardi, E., Lopez, L. et al. A Novel Additional Group II Intron Distinguishes the Mitochondrial rps3 Gene in Gymnosperms. J Mol Evol 60, 196–206 (2005). https://doi.org/10.1007/s00239-004-0098-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0098-4

Keywords

Navigation