Skip to main content
Log in

Type I Antifreeze Proteins: Possible Origins from Chorion and Keratin Genes in Atlantic Snailfish

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Type I antifreeze proteins (AFPs) are alanine-rich α-helical polypeptides found in some species of right-eye flounders, sculpin, and snailfish. In this study, a shorthorn sculpin skin type I cDNA clone was used to probe an Atlantic snailfish liver cDNA library in order to locate expressed genes corresponding to snailfish plasma AFPs. Clones isolated from the cDNA library had sections with substantial amino acid and nucleotide sequence similarity to snailfish type I AFPs. However, further analysis revealed that the positives were actually three different liver-expressed proteins—two were eggshell proteins, while the third was a type II keratin. We propose that a shift in reading frame could produce alanine-rich candidate AFPs with possible antifreeze activity or ice crystal modification properties. Furthermore, it is plausible that one or more of the liver-expressed proteins represent the progenitors of snailfish type I AFPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • AV Aarset L Jorgensen (1988) ArticleTitleCold hardiness of the eggs of the plaise, Pleuronectes platessa Polar Biol 9 95–99 Occurrence Handle10.1007/BF00442035

    Article  Google Scholar 

  • L Chen AL DeVries CH Cheng (1997a) ArticleTitleConvergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod Proc Natl Acad Sci USA 94 3817–3822 Occurrence Handle10.1073/pnas.94.8.3817

    Article  Google Scholar 

  • L Chen AL DeVries CH Cheng (1997b) ArticleTitleEvolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish Proc Natl Acad Sci USA 94 3811–3816 Occurrence Handle10.1073/pnas.94.8.3811

    Article  Google Scholar 

  • CH Cheng L Chen (1999) ArticleTitleEvolution of an antifreeze glycoprotein Nature 401 443–444 Occurrence Handle10.1038/46721 Occurrence Handle10519545

    Article  PubMed  Google Scholar 

  • P Chomczynski N Sacchi (1987) ArticleTitleSingle-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction Anal Biochem 162 156–159 Occurrence Handle10.1016/0003-2697(87)90021-2 Occurrence Handle2440339

    Article  PubMed  Google Scholar 

  • J Davenport J Stene (1986) ArticleTitleFreezing resistance, temperature and salinity tolerance in eggs, larvae and adults of capelin, Mallotus villosus, from Balsfjord J Mar Biol Assoc UK 66 145–157

    Google Scholar 

  • G Deng DW Andrews RA Laursen (1997) ArticleTitleAmino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis FEBS Lett 402 17–20 Occurrence Handle10.1016/S0014-5793(96)01466-4 Occurrence Handle9013849

    Article  PubMed  Google Scholar 

  • Evans, RP (2003) Characterization or skin and plasma type I antifreeze proteins from Atlantic (Liparis atlanticus) and dusky (Liparis gibbus) snailfish. PhD thesis. Memorial University of Newfoundland, St. John’s, Newfoundland

  • RP Evans GL Fletcher (2004) ArticleTitleIsolation and purification of antifreeze proteins from skin tissues of snailfish, cunner and sea raven Biochim Biophys Acta 1700 209–217 Occurrence Handle15262230

    PubMed  Google Scholar 

  • RP Evans GL Fletcher (2001) ArticleTitleIsolation and characterization of type I antifreeze proteins from Atlantic snailfish (Liparis atlanticus) and dusky snailfish (Liparis gibbus) Biochim Biophys Acta 1547 235–244 Occurrence Handle11410279

    PubMed  Google Scholar 

  • KV Ewart GL Fletcher (1993) ArticleTitleHerring antifreeze protein; primary structure and evidence for a C-type lectin evolutionary origin Mol Mar Biol Biotechnol 2 20–27 Occurrence Handle8364686

    PubMed  Google Scholar 

  • KV Ewart Z Li DS Yang GL Fletcher CL Hew (1998) ArticleTitleThe ice-binding site of Atlantic herring antifreeze protein corresponds to the carbohydrate-binding site of C-type lectins Biochemistry 37 4080–4085 Occurrence Handle10.1021/bi972503w Occurrence Handle9521729

    Article  PubMed  Google Scholar 

  • KV Ewart Q Lin CL Hew (1999) ArticleTitleStructure, function and evolution of antifreeze proteins Cell Mol Life Sci 55 271–283 Occurrence Handle10.1007/s000180050289 Occurrence Handle10188586

    Article  PubMed  Google Scholar 

  • GL Fletcher SV Goddard PL Davies Z Gong KV Ewart CL Hew (1998) New insights into fish antifreeze proteins: Physiological significance and molecular regulation HO Pörtner RC Playle (Eds) Cold ocean physiology Cambridge University Press New York 240–265

    Google Scholar 

  • GL Fletcher CL Hew PL Davies (2001) ArticleTitleAntifreeze proteins of teleost fishes Annu Rev Physiol 63 359–390 Occurrence Handle10.1146/annurev.physiol.63.1.359 Occurrence Handle11181960

    Article  PubMed  Google Scholar 

  • Z Gong KV Ewart Z Hu GL Fletcher CL Hew (1996) ArticleTitleSkin antifreeze protein genes of the winter flounder, Pleuronectes americanus, encode distinct and active polypeptides without the secretory signal and prosequences J Biol Chem 271 4106–4112 Occurrence Handle10.1074/jbc.271.32.19037 Occurrence Handle8626748

    Article  PubMed  Google Scholar 

  • JH Graber CR Cantor SC Mohr TF Smith (1999) ArticleTitleIn silico detection of control signals: mRNA 3′-end-processing sequences in diverse species Proc Natl Acad Sci USA 96 14055–14060 Occurrence Handle10.1073/pnas.96.24.14055 Occurrence Handle10570197

    Article  PubMed  Google Scholar 

  • W Gronwald MC Loewen B Lix AJ Daugulis FD Sonnichsen PL Davies BD Sykes (1998) ArticleTitleThe solution structure of type II antifreeze protein reveals a new member of the lectin family Biochemistry 37 4712–4721 Occurrence Handle10.1021/bi972788c Occurrence Handle9537986

    Article  PubMed  Google Scholar 

  • MM Harding LG Ward AD Haymet (1999) ArticleTitleType I “antifreeze” proteins. Structure-activity studies and mechanisms of ice growth inhibition Eur J Biochem 264 653–665 Occurrence Handle10.1046/j.1432-1327.1999.00617.x Occurrence Handle10491111

    Article  PubMed  Google Scholar 

  • CL Hew DS Yang (1992) ArticleTitleProtein interaction with ice Eur J Biochem 203 33–42 Occurrence Handle10.1111/j.1432-1033.1992.tb19824.x Occurrence Handle1730239

    Article  PubMed  Google Scholar 

  • WK Low M Miao KV Ewart DS Yang GL Fletcher CL Hew (1998) ArticleTitleSkin-type antifreeze protein from the shorthorn sculpin, Myoxocephalus scorpius. Expression and characterization of a Mr 9,700 recombinant protein J Biol Chem 273 23098–23103 Occurrence Handle10.1074/jbc.273.36.23098 Occurrence Handle9722537

    Article  PubMed  Google Scholar 

  • WK Low Q Lin C Stathakis M Miao GL Fletcher CL Hew (2001) ArticleTitleIsolation and characterization of skin-type, type I antifreeze polypeptides from the longhorn sculpin, Myoxocephalus octodecemspinosus J Biol Chem 276 11582–11589 Occurrence Handle10.1074/jbc.M009293200 Occurrence Handle11136728

    Article  PubMed  Google Scholar 

  • WK Low Q Lin KV Ewart GL Fletcher CL Hew (2002) The skin-type antifreeze polypeptides: A new class of type I AFPs KV Ewart CL Hew (Eds) Fish antifreeze proteins World Scientific Singapore 161–186

    Google Scholar 

  • CB Marshall GL Fletcher PL Davies (2004) ArticleTitleHyperactive antifreeze protein in a fish Nature 429 153 Occurrence Handle10.1038/429153a Occurrence Handle15141201

    Article  PubMed  Google Scholar 

  • WB Scott MG Scott (1988) Atlantic fishes of Canada University of Toronto Press Toronto

    Google Scholar 

  • MM Tomczak PK Hincha SD Estrada WF Wolkers LM Crowe RE Feeney F Tablin JH Crowe (2002) ArticleTitleA mechanism for stabilization of membranes at low temperatures by an antifreeze protein Biophys J 82 874–881 Occurrence Handle11806929

    PubMed  Google Scholar 

  • JR True SB Carroll (2002) ArticleTitleGene co-option in physiological and morphological evolution Annu Rev Cell Dev Biol 18 53–80 Occurrence Handle10.1146/annurev.cellbio.18.020402.140619 Occurrence Handle12142278

    Article  PubMed  Google Scholar 

  • PF Valerio SV Goddard MH Kao GL Fletcher (1992) ArticleTitleSurvival of northern Atlantic cod (Gadus morhua) eggs and larvae when exposed to ice and low temperature Can J Fish Aquat Sci 49 2588–2595

    Google Scholar 

  • Y Wu GL Fletcher (2001) ArticleTitleEfficacy of antifreeze protein types in protecting liposome membrane integrity depends on phospholipid class Biochim Biophys Acta 1524 11–16 Occurrence Handle11078953

    PubMed  Google Scholar 

  • Z Zhao G Deng Q Lui RA Laursen (1998) ArticleTitleCloning and sequencing of cDNA encoding the LS-12 antifreeze protein in the longhorn sculpin, Myoxocephalus octodecimspinosis Biochim Biophys Acta 1382 177–180 Occurrence Handle9540788

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank M. King and Dr. M. Shears at the OSC for technical assistance and the OSC divers for sample collection. We also thank Dr. Ming Kao for help with antifreeze activity measurements and Dr. Z. Gong for snailfish cDNA library construction. This work was supported by a grant from NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Evans.

Additional information

[Reviewing Editor: Dr. John Oakeshott]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, R.P., Fletcher, G.L. Type I Antifreeze Proteins: Possible Origins from Chorion and Keratin Genes in Atlantic Snailfish. J Mol Evol 61, 417–424 (2005). https://doi.org/10.1007/s00239-004-0067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0067-y

Keywords

Navigation