Skip to main content
Log in

Origin of Toll-Like Receptor-Mediated Innate Immunity

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Toll-related receptors (TLR) have been found in four animal phyla: Nematoda, Arthropoda, Echinodermata, and Chordata. No TLR has been identified thus far in acoelomates. TLR genes play a pivotal role in the innate immunity in both fruit fly and mammals. The prevailing view is that TLR-mediated immunity is ancient. The two pseudocoelomate TLRs, one each from Caenorhabditis elegans and Strongyloides stercoralis, were distinct from the coelomate ones. Further, the only TLR gene (Tol-1) in Ca. elegans did not appear to play a role in innate immunity. We argue that TLR-mediated innate immunity developed only in the coelomates, after they split from pseudocoelomates and acoelomates. We hypothesize that the function of TLR-mediated immunity is to prevent microbial infection in the body cavity present only in the coelomates. Phylogenetic analysis showed that almost all arthropod TLRs form a separate cluster from the mammalian counterparts. We further hypothesize that TLR-mediated immunity developed independently in the protostomia and deuterostomia coelomates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Aballay E Drenkard LR Hilbun FM Ausubel (2003) ArticleTitle Caenorhabditis elegans innate immune response triggered by Salmonella enterica requires intact LPS and is mediated by a MAPK signaling pathway. Curr Biol 13 47–52

    Google Scholar 

  2. AM Aguinaldo JM Turbeville LS Linford MC Rivera JR Garey RA Raff JA Lake (1997) ArticleTitleEvidence for a clade of nematodes, arthropods and other moulting animals. Nature 387 489–493

    Google Scholar 

  3. SF Altschul W Gish W Miller EW Myers DJ Lipman (1990) ArticleTitleBasic local alignment search tool. J Mol Biol 215 403–410

    Google Scholar 

  4. KV Anderson DS Schneider D Morisato Y Jin EL Ferguson (1992) ArticleTitleExtracellular morphogens in Drosophila embryonic dorsal-ventral patterning. Cold Spring Harb Symp Quant Biol 57 409–417

    Google Scholar 

  5. B Beutler M Rehli (2002) ArticleTitleEvolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr Top Microbiol Immunol 270 1–21

    Google Scholar 

  6. GK Christophides E Zdobnov C Barillas-Mury et al. (2002) ArticleTitleImmunity-related genes and gene families in Anopheles gambiae. Science 298 159–165

    Google Scholar 

  7. A Dunne LA O’Neill (2003) ArticleTitleThe interleukin-1 receptor/Toll-like receptor superfamily: Signal transduction during inflammation and host defense. Sci STKE 2003 re3

    Google Scholar 

  8. A Fedorov X Cao S Saxonov SJ de Souza SW Roy W Gilbert (2001) ArticleTitleIntron distribution difference for 276 ancient and 131 modern genes suggests the existence of ancient introns. Proc Natl Acad Sci USA 98 13177–13182

    Google Scholar 

  9. R Friedman AL Hughes (2002) ArticleTitleMolecular evolution of the NF-kappaB signaling system. Immunogenetics 53 964–974

    Google Scholar 

  10. W Gilbert SJ de Souza M Long (1997) ArticleTitleOrigin of genes. Proc Natl Acad Sci USA 94 7698–7703

    Google Scholar 

  11. JA Hoffmann FC Kafatos CA Janeway RA Ezekowitz (1999) ArticleTitlePhylogenetic perspectives in innate immunity. Science 284 1313–1318

    Google Scholar 

  12. W Hu Q Yan DK Shen et al. (2003) ArticleTitleEvolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nat Genet 35 139–147

    Google Scholar 

  13. AL Hughes (1998) ArticleTitleProtein phylogenies provide evidence of a radical discontinuity between arthropod and vertebrate immune systems. Immunogenetics 47 283–296

    Google Scholar 

  14. M Imamura M Yamakawa (2002) ArticleTitleMolecular cloning and expression of a Toll receptor gene homologue from the silkworm, Bombyx mori. Biochim Biophys Acta 1576 246–254

    Google Scholar 

  15. CL Kurz JJ Ewbank (2003) ArticleTitle Caenorhabditis elegans: An emerging genetic model for the study of innate immunity. Nat Rev Genet 4 380–390

    Google Scholar 

  16. B Lemaitre E Nicolas L Michaut JM Reichhart JA Hoffmann (1996) ArticleTitleThe dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86 973–983

    Google Scholar 

  17. C Luna X Wang Y Huang J Zhang L Zheng (2002) ArticleTitleCharacterization of four Toll related genes during development and immune responses in Anopheles gambiae. Insect Biochem Mol Biol 32 1171–1179

    Google Scholar 

  18. C Luna NT Hoa J Zhang SM Kanzok SE Brown JL Imler DL Knudson L Zheng (2003) ArticleTitleCharacterization of three Toll-like genes from mosquito Aedes aegypti. Insect Mol Biol 12 67–74

    Google Scholar 

  19. C Luo L Zheng (2000) ArticleTitleIndependent evolution of Toll and related genes in insects and mammals. Immunogenetics 51 92–98

    Google Scholar 

  20. C Luo B Shen JL Manley L Zheng (2001) ArticleTitleTehao functions in the Toll pathway in Drosophila melanogaster: Possible roles in development and innate immunity. Insect Mol Biol 10 457–461

    Google Scholar 

  21. J Maxton-Kuchenmeister K Handel U Schmidt-Ott S Roth H Jackle (1999) ArticleTitleToll homologue expression in the beetle Tribolium suggests a different mode of dorsoventral patterning than in drosophila embryos. Mech Dev 83 107–114

    Google Scholar 

  22. R Medzhitov Jr CA Janeway (1998) ArticleTitleAn ancient system of host defense. Curr Opin Immunol 10 12–15

    Google Scholar 

  23. T Michel JM Reichhart JA Hoffmann J Royet (2001) ArticleTitle Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414 756–759

    Google Scholar 

  24. C Nielsen (2001) Animal evolution: Interrelationships of the living phyla. Oxford University Press Oxford

    Google Scholar 

  25. JY Ooi Y Yagi X Hu YT Ip (2002) ArticleTitleThe Drosophila Toll-9 activates a constitutive antimicrobial defense. EMBO Rep 3 82–78

    Google Scholar 

  26. H Oshiumi T Tsujita K Shida M Matsumoto K Ikeo T Seya (2003) ArticleTitlePrediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome. Immunogenetics 54 791–800

    Google Scholar 

  27. JD Palmer Jr JM Logsdon (1991) ArticleTitleThe recent origins of introns. Curr Opin Gene Dev 1 470–477

    Google Scholar 

  28. N Pujol EM Link LK Liu CL Kurz G Alloing MW Tan KP Ray R Solan CD Johnson JJ Ewbank (2001) ArticleTitleA reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol 11 809–821

    Google Scholar 

  29. D Riddle T Blumenthal B Meyer J Priess (1997) C. elegans II. . Cold Spring Harbor Laboratory Press Plainview, NY

    Google Scholar 

  30. SW Roy BP Lewis A Fedorov W Gilbert (2001) ArticleTitleFootprints of primordial introns on the eukaryotic genome. Trends Genet 17 496–501

    Google Scholar 

  31. A Rzhetsky FJ Ayala LC Hsu C Chang A Yoshida (1997) ArticleTitleExon/intron structure of aldehyde dehydrogenase genes supports the “introns-late” theory. Proc Natl Acad Sci USA 94 6820–6825

    Google Scholar 

  32. J Sambrook EF Fritsch T Maniatis (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY

    Google Scholar 

  33. J Schultz RR Copley T Doerks CP Ponting P Bork (2000) ArticleTitleSMART: A web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28 231–234

    Google Scholar 

  34. S Tauszig E Jouanguy JA Hoffmann J-L Imler (2000) ArticleTitleToll related receptors and the control of antimicrobial peptide expression in Drosophila. Proc Natl Acad Sci USA 97 10520–10525

    Google Scholar 

  35. JD Thompson TJ Gibson F Plewniak F Jeanmougin DG Higgins (1997) ArticleTitleThe CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 4876–4852

    Google Scholar 

  36. WC Wheeler M Whiting QD Wheeler JM Carpenter (2001) ArticleTitleThe phylogeny of the extant hexapod orders. Cladistics 17 113–169

    Google Scholar 

  37. M Yamagata JP Merlie JR Sanes (1994) ArticleTitleInterspecific comparisons reveal conserved features of the Drosophila Toll protein. Gene 139 223–228

    Google Scholar 

Download references

Acknowledgements

We are grateful for generous gifts from U. Schmidt-Ott (for the Clogmia genomic cDNA library), D. Fish (for Culex pipiens), G. Yan (for Tribolium samples), and G. Lanzaro, and L. Munstermann for other insect species. This work is supported in part by NIH Grant R01A43035 and an award from the Burroughs Wellcome Fund to L.Z. S.M.K. was supported in part by the DFG (Deutsche Forschungsgemeinschaft) and N.T.H. was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangbiao Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanzok, S.M., Hoa, N.T., Bonizzoni, M. et al. Origin of Toll-Like Receptor-Mediated Innate Immunity . J Mol Evol 58, 442–448 (2004). https://doi.org/10.1007/s00239-003-2565-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-2565-8

Keywords

Navigation