Skip to main content
Log in

Bilaterian Phylogeny Based on Analyses of a Region of the Sodium–Potassium ATPase β-Subunit Gene

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Molecular investigations of deep-level relationships within and among the animal phyla have been hampered by a lack of slowly evolving genes that are amenable to study by molecular systematists. To provide new data for use in deep-level metazoan phylogenetic studies, primers were developed to amplify a 1.3-kb region of the α subunit of the nuclear-encoded sodium–potassium ATPase gene from 31 bilaterians representing several phyla. Maximum parsimony, maximum likelihood, and Bayesian analyses of these sequences (combined with ATPase sequences for 23 taxa downloaded from GenBank) yield congruent trees that corroborate recent findings based on analyses of other data sets (e.g., the 18S ribosomal RNA gene). The ATPase-based trees support monophyly for several clades (including Lophotrochozoa, a form of Ecdysozoa, Vertebrata, Mollusca, Bivalvia, Gastropoda, Arachnida, Hexapoda, Coleoptera, and Diptera) but do not support monophyly for Deuterostomia, Arthropoda, or Nemertea. Parametric bootstrapping tests reject monophyly for Arthropoda and Nemertea but are unable to reject deuterostome monophyly. Overall, the sodium–potassium ATPase α-subunit gene appears to be useful for deep-level studies of metazoan phylogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. SL Adamkewicz MG Harasewych J Blake D Saudek CJ Bult (1997) ArticleTitleA molecular phylogeny of the bivalve mollusks. Mol Biol Evol 14 619–629 Occurrence Handle1:STN:280:ByiA3szpsVU%3D Occurrence Handle9190063

    CAS  PubMed  Google Scholar 

  2. AMA Aguinaldo JM Turbeville LS Lindford MC Rivera JR Garey RA Raff JA Lake (1997) ArticleTitleEvidence for a clade of nematodes, arthropods and other moulting animals. Nature 387 389–393 Occurrence Handle10.1038/387489a0

    Article  Google Scholar 

  3. J Alroy (1999) ArticleTitleThe fossil record of North American mammals: Evidence for a Paleocene evolutionary radiation. Syst Biol 48 107–118 Occurrence Handle10.1080/106351599260472 Occurrence Handle1:STN:280:DC%2BD38zjslSjtg%3D%3D Occurrence Handle12078635

    Article  CAS  PubMed  Google Scholar 

  4. FE Anderson (2000) ArticleTitlePhylogeny and historical biogeography of the loliginid squids (Mollusca: Cephalopoda) based on mitochondrial DNA sequence data. Mol Phylogenet Evol 15 191–214 Occurrence Handle10.1006/mpev.1999.0753 Occurrence Handle1:CAS:528:DC%2BD3cXjs12qtbg%3D Occurrence Handle10837151

    Article  CAS  PubMed  Google Scholar 

  5. S Aris-Brosou ZH Yang (2002) ArticleTitleEffects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. Syst Biol 51 703–714 Occurrence Handle10.1080/10635150290102375 Occurrence Handle12396585

    Article  PubMed  Google Scholar 

  6. LA Baxter-Lowe JZ Guo EE Bergstrom LE Hokin (1989) ArticleTitleMolecular cloning of the Na,K-ATPase alpha-subunit in developing brine shrimp and sequence comparison with higher organisms. FEBS Lett 257 181–187 Occurrence Handle10.1016/0014-5793(89)81816-2 Occurrence Handle1:CAS:528:DyaK3cXitlSmu78%3D Occurrence Handle2553490

    Article  CAS  PubMed  Google Scholar 

  7. MJ Benton (1997) Vertebrate palaeontology. Chapman & Hall London

    Google Scholar 

  8. JE Blair K Ikeo T Gojobori SB Hedges (2002) ArticleTitleThe evolutionary position of nematodes. BMC Evol Biol 2 7 Occurrence Handle10.1186/1471-2148-2-7 Occurrence Handle11985779

    Article  PubMed  Google Scholar 

  9. M Blanchette T Kunisawa D Sankoff (1999) ArticleTitleGene order breakpoint evidence and animal mitochondrial phylogeny. J Mol Evol 49 193–203 Occurrence Handle1:CAS:528:DyaK1MXltFSktrw%3D Occurrence Handle10441671

    CAS  PubMed  Google Scholar 

  10. JL Boore (1999) ArticleTitleAnimal mitochondrial genomes. Nucleic Acids Res 27 1767–1780 Occurrence Handle10.1093/nar/27.8.1767 Occurrence Handle1:CAS:528:DyaK1MXivVersbo%3D Occurrence Handle10101183

    Article  CAS  PubMed  Google Scholar 

  11. JL Boore WM Brown (2000) ArticleTitleMitochondrial genomes of Galathealinum, Helobdella, and Platynereis: Sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol Biol Evol 17 87–106 Occurrence Handle1:CAS:528:DC%2BD3cXot1Sjsw%3D%3D Occurrence Handle10666709

    CAS  PubMed  Google Scholar 

  12. JL Boore JL Staton (2002) ArticleTitleThe mitochondrial genome of the sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca. Mol Biol Evol 19 127–137 Occurrence Handle1:CAS:528:DC%2BD38XovVCjtg%3D%3D Occurrence Handle11801741

    CAS  PubMed  Google Scholar 

  13. JL Boore DV Lavrov WM Brown (1998) ArticleTitleGene translocation links insects and crustaceans. Nature 392 667–668 Occurrence Handle10.1038/33577 Occurrence Handle1:CAS:528:DyaK1cXjtVWmuro%3D Occurrence Handle9565028

    Article  CAS  PubMed  Google Scholar 

  14. C Borchiellini N Boury-Esnault J Vacelet Y Le Parco (1998) ArticleTitlePhylogenetic analysis of the Hsp70 sequences reveals the monophyly of Metazoa and specific phylogenetic relationships between animals and fungi. Mol Biol Evol 15 647–655 Occurrence Handle1:CAS:528:DyaK1cXjsFShsbc%3D Occurrence Handle9615446

    CAS  PubMed  Google Scholar 

  15. RC Brusca GJ Brusca (1990) Invertebrates. Sinauer Associates Sunderland, MA

    Google Scholar 

  16. A Canapa I Marota F Rollo E Olmo (1999) ArticleTitleThe small-subunit rRNA gene sequences of venerids and the phylogeny of Bivalvia. J Mol Evol 48 463–468 Occurrence Handle1:CAS:528:DyaK1MXhvFyqu7s%3D Occurrence Handle10079284

    CAS  PubMed  Google Scholar 

  17. Y Cao PJ Waddell N Okada M Hasegawa (1998) ArticleTitleThe complete mitochondrial DNA sequence of the shark Mustelus manazo: Evaluating rooting contradictions to living bony vertebrates. Mol Biol Evol 15 1637–1646 Occurrence Handle1:CAS:528:DyaK1MXjtVOl Occurrence Handle9866199

    CAS  PubMed  Google Scholar 

  18. J Castresana G Feldmaier-Fuchs S Yokobori N Satoh S Paabo (1998) ArticleTitleThe mitochondrial genome of the hemichordate Balanoglossus carnosus and the evolution of deuterostome mitochondria. Genetics 150 1115–1123 Occurrence Handle1:CAS:528:DyaK1cXnsFCntLo%3D Occurrence Handle9799263

    CAS  PubMed  Google Scholar 

  19. S Cho A Mitchell JC Regier C Mitter RW Poole TP Friedlander S Zhao (1995) ArticleTitleA highly conserved nuclear gene for low-level phylogenetics: Elongation factor-1 alpha recovers morphology-based tree for heliothine moths. Mol Biol Evol 12 650–656 Occurrence Handle1:CAS:528:DyaK2MXmsVOqs7c%3D Occurrence Handle7659020

    CAS  PubMed  Google Scholar 

  20. R Christen A Ratto A Baroin R Perasso KG Grell A Adoutte (1991) ArticleTitleAn analysis of the origin of metazoans, using comparisons of partial sequences of the 28S RNA, reveals an early emergence of triploblasts. EMBO J 10 499–503 Occurrence Handle1:CAS:528:DyaK3MXhvVSmsbo%3D Occurrence Handle2001670

    CAS  PubMed  Google Scholar 

  21. R de Rosa JK Grenier T Andreeva CE Cook A Adoutte M Akam SB Carroll G Balavoine (1999) ArticleTitleHox genes in brachiopods and priapulids and protostome evolution. Nature 399 772–776 Occurrence Handle10.1038/21631 Occurrence Handle1:STN:280:DyaK1MzhvVWhtw%3D%3D Occurrence Handle10391241

    Article  CAS  PubMed  Google Scholar 

  22. M Dowtin AD Austin (1999) ArticleTitleEvolutionary dynamics of a mitochondrial rearrangement “hot spot” in the Hymenoptera. Mol Biol Evol 16 298–309 Occurrence Handle10028295

    PubMed  Google Scholar 

  23. I Eeckhaut D McHugh P Mardulyn R Tiedemann D Monteyne M Jangoux MC Milinkovitch (2000) ArticleTitleMyzostomida: A link between trochozoans and flatworms? Proc R Soc Lond B 267 1383–1392 Occurrence Handle10.1098/rspb.2000.1154 Occurrence Handle1:STN:280:DC%2BD3M7gsV2htg%3D%3D

    Article  CAS  Google Scholar 

  24. DJ Eernisse JS Albert FE Anderson (1992) ArticleTitleAnnelida and Arthropoda are not sister taxa: A phylogenetic analysis of spiralian metazoan morphology. Syst Biol 41 305–330

    Google Scholar 

  25. A Erber D Riemer M Bovenschulte K Weber (1998) ArticleTitleMolecular phylogeny of metazoan intermediate filament proteins. J Mol Evol 47 751–762 Occurrence Handle1:CAS:528:DyaK1cXotVGhsr4%3D Occurrence Handle9847417

    CAS  PubMed  Google Scholar 

  26. A Erber D Riemer H Hofemeister M Bovenshulte R Stick G Panopoulou H Lebrach K Weber (1999) ArticleTitleCharacterization of the Hydra lamin and its gene: A molecular phylogeny of metazoan lamins. J Mol Evol 49 260–271 Occurrence Handle1:CAS:528:DyaK1MXltFSrtb0%3D Occurrence Handle10441677

    CAS  PubMed  Google Scholar 

  27. J Felsenstein (1985) ArticleTitleConfidence limits on phylogenies: An approach using the bootstrap. Evolution 39 783–791

    Google Scholar 

  28. J Felsenstein (1995) PHYLIP (phylogeny inference package). Distributed by the author, Department of Genetics, University of Washington Seattle

    Google Scholar 

  29. KG Field GJ Olsen DJ Lane SJ Giovannoni MT Ghiselin EC Raff NR Pace RA Raff (1988) ArticleTitleMolecular phylogeny of the animal kingdom. Science 239 748–753 Occurrence Handle1:CAS:528:DyaL1cXhsVKltb8%3D Occurrence Handle3277277

    CAS  PubMed  Google Scholar 

  30. P Flook H Rowell G Gellissen (1995) ArticleTitleHomoplastic rearrangements of insect mitochondrial transfer-RNA genes. Naturwissenschaften 82 336–337 Occurrence Handle1:CAS:528:DyaK2MXntFKit7w%3D

    CAS  Google Scholar 

  31. F Frati C Simon J Sullivan DL Swofford (1997) ArticleTitleEvolution of the mitochondrial cytochrome oxidase II gene in Collembola. J Mol Evol 44 145–158 Occurrence Handle1:CAS:528:DyaK2sXhtFaksb0%3D Occurrence Handle9069175

    CAS  PubMed  Google Scholar 

  32. TP Friedlander JC Regier C Mitter (1992) ArticleTitleNuclear gene sequences for higher level phylogenetic analysis: 14 promising candidates. Syst Biol 41 483–489

    Google Scholar 

  33. M Friedrich D Tautz (1995) ArticleTitleRibosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376 165–167 Occurrence Handle10.1038/376165a0 Occurrence Handle1:CAS:528:DyaK2MXmvFalsbs%3D Occurrence Handle7603566

    Article  CAS  PubMed  Google Scholar 

  34. MT Ghiselin (1989) Summary of our present knowledge of metazoan phylogeny. B Fernholm K Bremer H Jörnvall (Eds) The hierarchy of life. Elsevier Amsterdam 261–272

    Google Scholar 

  35. G Giribet C Ribera (1998) ArticleTitleThe position of arthropods in the animal kingdom: A search for a reliable outgroup for internal arthropod phylogeny. Mol Phylogenet Evol 9 481–488 Occurrence Handle10.1006/mpev.1998.0494 Occurrence Handle1:STN:280:DyaK1czjsVGksw%3D%3D Occurrence Handle9667996

    Article  CAS  PubMed  Google Scholar 

  36. G Giribet C Ribera (2000) ArticleTitleA review of arthropod phylogeny: New data based on ribosomal DNA sequences and direct character optimization. Cladistics 16 204–231 Occurrence Handle10.1006/clad.1999.0128

    Article  Google Scholar 

  37. G Giribet WC Wheeler (1999) ArticleTitleThe position of arthropods in the animal kingdom: Ecdysozoa, islands, trees and the “parsimony ratchet. Mol Phylogenet Evol 13 619–623 Occurrence Handle10.1006/mpev.1999.0679 Occurrence Handle1:STN:280:DC%2BD3c%2FovVOisg%3D%3D Occurrence Handle10620418

    Article  CAS  PubMed  Google Scholar 

  38. G Giribet J Carranza J Baguñà M Riutort C Ribera (1996) ArticleTitleFirst molecular evidence for the existence of a Tardigrada + Arthropoda clade. Mol Biol Evol 13 76–84 Occurrence Handle1:CAS:528:DyaK28XhtVylur8%3D Occurrence Handle8583909

    CAS  PubMed  Google Scholar 

  39. G Giribet DL Distel M Polz W Sterrer WC Wheeler (2000) ArticleTitleTriploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: A combined approach of 18S rDNA sequences and morphology. Syst Biol 49 539–562 Occurrence Handle1:STN:280:DC%2BD38zntVKquw%3D%3D Occurrence Handle12116426

    CAS  PubMed  Google Scholar 

  40. G Giribet GD Edgecombe WC Wheeler (2001) ArticleTitleArthropod phylogeny based on eight molecular loci and morphology. Nature 413 157–161 Occurrence Handle10.1038/35093097 Occurrence Handle1:CAS:528:DC%2BD3MXntVOqsbY%3D Occurrence Handle11557979

    Article  CAS  PubMed  Google Scholar 

  41. KM Halanych (1998) ArticleTitleConsiderations for reconstructing metazoan history: Signal, resolution, and hypothesis testing. Am Zool 38 929–941

    Google Scholar 

  42. KM Halanych JD Bacheller AM Aguinaldo SM Liva DM Hillis JA Lake (1995) ArticleTitleEvidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267 1641–1643 Occurrence Handle1:CAS:528:DyaK2MXksVajtbk%3D Occurrence Handle7886451

    CAS  PubMed  Google Scholar 

  43. MJ Hickerson CW Cunningham (2000) ArticleTitleDramatic mitochondrial gene rearrangements in the hermit crab Pagurus longicarpus (Crustacea, Anomura). Mol Biol Evol 17 639–644 Occurrence Handle1:CAS:528:DC%2BD3cXisVSgtLo%3D Occurrence Handle10742054

    CAS  PubMed  Google Scholar 

  44. DM Hillis B Mable C Moritz (1996) Applications of molecular systematics and the future of the field. DM Hillis B Mable C Moritz (Eds) Molecular systematics. Sinauer Associates Sunderland, MA 515–543

    Google Scholar 

  45. JP Huelsenbeck DM Hillis R Jones (1996) Parametric bootstrapping in molecular phylogenetics: Applications and performance. JD Ferraris SR Palumbi (Eds) Molecular zoology: Advances, strategies and protocols. Wiley–Liss New York 19–46

    Google Scholar 

  46. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. http://morphbank.ebc.uu.se/mrbayes/

  47. UW Hwang M Friedrich D Tautz CJ Park W Kim (2001) ArticleTitleMitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413 154–157 Occurrence Handle1:CAS:528:DC%2BD3MXntVOqsLc%3D Occurrence Handle11557978

    CAS  PubMed  Google Scholar 

  48. P Janvier (1996) Early vertebrates. Clarendon Press New York

    Google Scholar 

  49. M Kobayashi H Wada N Satoh (1996) ArticleTitleEarly evolution of the Metazoa and phylogenetic status of the diploblasts as inferred from amino acid sequence of elongation factor-1α. . Mol Phylogenet Evol 5 414–422 Occurrence Handle1:CAS:528:DyaK28XjtVCku7s%3D Occurrence Handle8728399

    CAS  PubMed  Google Scholar 

  50. S Kojima (1998) ArticleTitleParaphyletic status of Polychaeta suggested by phylogenetic analysis based on the amino acid sequences of elongation factor-1α. Mol Phylogenet Evol 9 255–261 Occurrence Handle1:CAS:528:DyaK1cXivVaiur8%3D Occurrence Handle9562984

    CAS  PubMed  Google Scholar 

  51. S Kojima T Hashimoto M Hasegawa S Murata S Ohta H Seki N Okada (1993) ArticleTitleClose phylogenetic relationship between Vestimentifera (tube worms) and Annelida revealed by the amino acid sequence of elongation factor-1α. J Mol Evol 37 66–70 Occurrence Handle1:CAS:528:DyaK3sXlsFKlsLw%3D Occurrence Handle8360920

    CAS  PubMed  Google Scholar 

  52. M Kruse SP Leys IM Muller WEG Muller (1998) ArticleTitlePhylogenetic position of the Hexactinellida within the phylum Porifera based on the amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni. J Mol Evol 46 721–728 Occurrence Handle1:CAS:528:DyaK1cXjslOntbg%3D Occurrence Handle9608055

    CAS  PubMed  Google Scholar 

  53. S Kumar SB Hedges (1998) ArticleTitleA molecular timescale for vertebrate evolution. Nature 392 917–920 Occurrence Handle1:CAS:528:DyaK1cXjtV2jur8%3D Occurrence Handle9582070

    CAS  PubMed  Google Scholar 

  54. K Kusche T Burmester (2001) ArticleTitleDiplopod hemocyanin sequence and the phylogenetic position of the Myriapoda. Mol Biol Evol 18 1566–1573 Occurrence Handle1:CAS:528:DC%2BD3MXlslOisL4%3D Occurrence Handle11470848

    CAS  PubMed  Google Scholar 

  55. GV Lauder KF Liem (1983) ArticleTitleThe evolution and interrelationships of the actinopterygian fishes. Bull Mus Comp Zool 150 95–197

    Google Scholar 

  56. TH Le D Blair T Agatsuma P-F Humair NJH Campbell M Iwagami TJ Littlewood B Peacock DA Johnston J Bartley D Rollinson EA Herniou DS Zarlenga DP McManus (2000) ArticleTitlePhylogenies inferred from mitochondrial gene orders—A cautionary tale from the parasitic flatworms. Mol Biol Evol 17 1123–1125 Occurrence Handle1:CAS:528:DC%2BD3cXksVOlsrs%3D Occurrence Handle10889225

    CAS  PubMed  Google Scholar 

  57. DT Littlewood PD Olson MJ Telford EA Herniou M Riutort (2001) ArticleTitleElongation factor 1-alpha sequences alone do not assist in resolving the position of the acoela within the metazoa. Mol Biol Evol 18 437–442 Occurrence Handle1:CAS:528:DC%2BD3MXhvVKrt7o%3D Occurrence Handle11230546

    CAS  PubMed  Google Scholar 

  58. DR Maddison WP Maddison (2001) MacClade 4: Analysis of phylogeny and character evolution. Sinauer Associates Sunderland, MA

    Google Scholar 

  59. J Mallatt CJ Winchell (2002) ArticleTitleTesting the new animal phylogeny: First use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Mol Biol Evol 19 289–301 Occurrence Handle1:CAS:528:DC%2BD38XitFSnsL0%3D Occurrence Handle11861888

    CAS  PubMed  Google Scholar 

  60. AP Martin TM Burg (2002) ArticleTitlePerils of paralogy: Using HSP70 genes for inferring organismal phylogenies. Syst Biol 51 570–587 Occurrence Handle12228000

    PubMed  Google Scholar 

  61. D McHugh (1997) ArticleTitleMolecular evidence that echiurans and pogonophorans are derived annelids. Proc Natl Acad Sci USA 94 8006–8009 Occurrence Handle1:CAS:528:DyaK2sXksl2ms7s%3D Occurrence Handle9223304

    CAS  PubMed  Google Scholar 

  62. DP Mindell MD Sorenson DE Dimcheff (1998) ArticleTitleMultiple independent origins of mitochondrial gene order in birds. Proc Natl Acad Sci USA 95 10693–10697 Occurrence Handle10.1073/pnas.95.18.10693 Occurrence Handle1:CAS:528:DyaK1cXlvFWhu7o%3D Occurrence Handle9724766

    Article  CAS  PubMed  Google Scholar 

  63. AR Mushegian JR Garey J Martin L-X Liu (1998) ArticleTitleLarge-scale taxonomic profiling of eukaryotic model organisms: A comparison of orthologous proteins encoded by the human, fly, nematode and yeast genomes. Genome Res 8 590–598 Occurrence Handle1:CAS:528:DyaK1cXkt1aru7o%3D Occurrence Handle9647634

    CAS  PubMed  Google Scholar 

  64. C Nielsen N Scharff D Eibye-Jacobsen (1996) ArticleTitleCladistic analyses of the animal kingdom. Biol J Linn Soc Lond 57 385–410

    Google Scholar 

  65. N Nikoh N Iwabe K-i Kuma M Ohno T Sugiyama Y Watanabe K Yasui Z Shi-cui K Hori Y Shimura T Miyata (1997) ArticleTitleAn estimate of divergence time for Parazoa and Eumetazoa and that of Cephalochordata and Vertebrata by aldolase and triose phosphate isomerase clocks. J Mol Evol 45 97–106 Occurrence Handle1:CAS:528:DyaK2sXktl2gu78%3D Occurrence Handle9211740

    CAS  PubMed  Google Scholar 

  66. KJ Peterson DJ Eernisse (2001) ArticleTitleAnimal phylogeny and the ancestry of bilaterians: Inferences from morphology and 18S rDNA gene sequences. Evol Dev 3 170–205 Occurrence Handle1:CAS:528:DC%2BD38XisVWms7Y%3D Occurrence Handle11440251

    CAS  PubMed  Google Scholar 

  67. D Posada KA Crandall (1998) ArticleTitleModeltest: Testing the model of DNA substitution. Bioinformatics 14 817–818 Occurrence Handle10.1093/bioinformatics/14.9.817 Occurrence Handle1:CAS:528:DyaK1MXktlCltw%3D%3D Occurrence Handle9918953

    Article  CAS  PubMed  Google Scholar 

  68. Rambaut A (1995) Se-Al: Sequence Alignment Program. Distributed by the author

  69. TA Rawlings TM Collins R Bieler (2001) ArticleTitleA major mitochondrial gene rearrangement among closely related species. Mol Biol Evol 18 1604–1609 Occurrence Handle1:CAS:528:DC%2BD3MXlslOisLg%3D Occurrence Handle11470854

    CAS  PubMed  Google Scholar 

  70. JC Regier JW Shultz (1997) ArticleTitleMolecular phylogeny of the major arthropod groups indicates polyphyly of crustaceans and a new hypothesis for the origin of hexapods. Mol Biol Evol 14 902–913 Occurrence Handle1:CAS:528:DyaK2sXlvVejurs%3D Occurrence Handle9287423

    CAS  PubMed  Google Scholar 

  71. JC Regier JW Shultz (1998) ArticleTitleMolecular phylogeny of arthropods and the significance of the Cambrian “explosion” for molecular systematics. Am Zool 38 918–928

    Google Scholar 

  72. JC Regier JW Shultz (2001) ArticleTitleElongation factor-2: a useful gene for arthropod phylogenetics. Mol Phylogenet Evol 20 136–148 Occurrence Handle1:CAS:528:DC%2BD3MXksF2mu7s%3D Occurrence Handle11421654

    CAS  PubMed  Google Scholar 

  73. A Rokas PW Holland (2000) ArticleTitleRare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15 454–459 Occurrence Handle11050348

    PubMed  Google Scholar 

  74. TM Rose ER Schultz JG Henikoff S Pietrokovski CM McCallum S Henikoff (1998) ArticleTitleConsensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res 26 1628–1635 Occurrence Handle1:CAS:528:DyaK1cXis1OjtLY%3D Occurrence Handle9512532

    CAS  PubMed  Google Scholar 

  75. I Ruiz-Trillo M Riutort DT Littlewood EA Herniou J Baguna (1999) ArticleTitleAcoel flatworms: Earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283 1919–1923 Occurrence Handle1:CAS:528:DyaK1MXitVanurc%3D Occurrence Handle10082465

    CAS  PubMed  Google Scholar 

  76. I Ruiz-Trillo J Paps M Loukota C Ribera U Jondelius J Baguna M Riutort (2002) ArticleTitleA phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc Natl Acad Sci USA 99 11246–11251 Occurrence Handle1:CAS:528:DC%2BD38XmslSmtLc%3D Occurrence Handle12177440

    CAS  PubMed  Google Scholar 

  77. AG Saez R Escalante L Sastre (2000) ArticleTitleHigh DNA sequence variability at the alpha 1 Na/K-ATPase locus of Artemia franciscana (brine shrimp): Polymorphism in a gene for salt-resistance in a salt-resistant organism. Mol Biol Evol 17 235–250 Occurrence Handle1:CAS:528:DC%2BD3cXosFygtQ%3D%3D Occurrence Handle10677846

    CAS  PubMed  Google Scholar 

  78. HA Schmidt K Strimmer M Vingron A von Haeseler (2002) ArticleTitleTREE-PUZZLE: Maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18 502–504 Occurrence Handle1:CAS:528:DC%2BD38XivFKrsL0%3D Occurrence Handle11934758

    CAS  PubMed  Google Scholar 

  79. R Shao NJ Campbell SC Barker (2001a) ArticleTitleNumerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). Mol Biol Evol 18 858–865 Occurrence Handle1:CAS:528:DC%2BD3MXjtFykt7g%3D

    CAS  Google Scholar 

  80. R Shao NJ Campbell ER Schmidt SC Barker (2001b) ArticleTitleIncreased rate of gene rearrangement in the mitochondrial genomes of three orders of hemipteroid insects. Mol Biol Evol 18 1828–1832 Occurrence Handle1:CAS:528:DC%2BD3MXmt12hsLo%3D

    CAS  Google Scholar 

  81. JW Shultz JC Regier (2000) ArticleTitlePhylogenetic analysis of arthropods using two nuclear protein-encoding genes supports a crustacean + hexapod clade. Proc R Soc Lond B 267 1011–1019 Occurrence Handle1:CAS:528:DC%2BD3cXltFKgt7s%3D

    CAS  Google Scholar 

  82. G Steiner M Muller (1996) ArticleTitleWhat can 18S rDNA do for bivalve phylogeny? J Mol Evol 43 58–70 Occurrence Handle1:CAS:528:DyaK28Xks1Grtbg%3D Occurrence Handle8660430

    CAS  PubMed  Google Scholar 

  83. K Strimmer A von Haeseler (1996) ArticleTitleQuartet puzzling: A quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13 964–969 Occurrence Handle1:CAS:528:DyaK28XltlSmsLk%3D

    CAS  Google Scholar 

  84. DL Swofford (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates Sunderland, MA

    Google Scholar 

  85. M Thollesson JL Norenburg (2003) ArticleTitleRibbon worm relationships—A phylogeny of the phylum Nemertea. Proc R Soc Lond B 270 407–415 Occurrence Handle1:CAS:528:DC%2BD3sXktVWiu70%3D

    CAS  Google Scholar 

  86. JD Thompson TJ Gibson F Plewniak F Jeanmougin DG Higgins (1997) ArticleTitleThe ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24 4876–4882 Occurrence Handle10.1093/nar/25.24.4876

    Article  Google Scholar 

  87. JM Turbeville DM Pfeifer KG Field RA Raff (1991) ArticleTitleThe phylogenetic status of arthropods, as inferred from 18S rRNA sequences. Mol Biol Evol 8 669–686 Occurrence Handle1:CAS:528:DyaK3MXlslKntbo%3D Occurrence Handle1766363

    CAS  PubMed  Google Scholar 

  88. M von Nickisch-Rosenegk WM Brown JL Boore (2001) ArticleTitleComplete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: Gene arrangements indicate that platyhelminths are eutrochozoans. Mol Biol Evol 18 721–730 Occurrence Handle1:CAS:528:DC%2BD3MXjtFyktr0%3D Occurrence Handle11319256

    CAS  PubMed  Google Scholar 

  89. PJ Waddell Y Cao M Hasegawa DP Mindell (1999a) ArticleTitleAssessing the Cretaceous superordinal divergence times within birds and placental mammals by using whole mitochondrial protein sequences and an extended statistical framework. Syst Biol 48 119–137 Occurrence Handle1:STN:280:DC%2BD38zjslSjtw%3D%3D

    CAS  Google Scholar 

  90. PJ Waddell N Okada M Hasegawa (1999b) ArticleTitleTowards resolving the interordinal relationships of placental mammals. Syst Biol 48 1–5 Occurrence Handle1:STN:280:DC%2BD38zjslSjsQ%3D%3D

    CAS  Google Scholar 

  91. DY-C Wang S Kumar SB Hedges (1999) ArticleTitleDivergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc R Soc Lond B 266 163–171 Occurrence Handle1:CAS:528:DyaK1MXht1Gns7g%3D

    CAS  Google Scholar 

  92. WC Wheeler P Cartwright CY Hayashi (1993) ArticleTitleArthropod phylogeny—A combined approach. Cladistics 9 1–39

    Google Scholar 

  93. WC Wheeler M Whiting QD Wheeler JM Carpenter (2001) ArticleTitleThe phylogeny of the extant hexapod orders. Cladistics 17 113–169 Occurrence Handle10.1006/clad.2000.0147

    Article  Google Scholar 

  94. S Whelan N Goldman (2001) ArticleTitleA general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18 691–699 Occurrence Handle1:CAS:528:DC%2BD3MXjtFyktr4%3D Occurrence Handle11319253

    CAS  PubMed  Google Scholar 

  95. K Wilson V Cahill E Ballment J Benzie (2000) ArticleTitleThe complete sequence of the mitochondrial genome of the crustacean Penaeus monodon: Are malacostracan crustaceans more closely related to insects than to branchiopods? Mol Biol Evol 17 863–874 Occurrence Handle1:CAS:528:DC%2BD3cXjvFygs74%3D Occurrence Handle10833192

    CAS  PubMed  Google Scholar 

  96. B Winnepenninckx T Backeljau R De Wachter (1995) ArticleTitlePhylogeny of protostome worms derived from 18S rRNA sequences. Mol Biol Evol 12 641–649 Occurrence Handle1:CAS:528:DyaK2MXmsVOqs7Y%3D Occurrence Handle7659019

    CAS  PubMed  Google Scholar 

  97. B Winnepenninckx T Backeljau R DeWachter (1996) ArticleTitleInvestigation of molluscan phylogeny on the basis of 18S rRNA sequences. Mol Biol Evol 13 1306–1317 Occurrence Handle1:CAS:528:DyaK28XnsVWhtLc%3D Occurrence Handle8952075

    CAS  PubMed  Google Scholar 

  98. J Zrzavy S Mihulka P Kepka A Bezdek D Tietz (1998) ArticleTitlePhylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14 249–285

    Google Scholar 

  99. GR Zug LJ Vitt JP Caldwell (2001) Herpetology: An introductory biology of amphibians and reptiles. Academic Press San Diego

    Google Scholar 

Download references

Acknowledgements

The initial phases of this work were performed while F.E.A. and M.T. were postdoctoral fellows in the Division of Invertebrate Zoology working at the Laboratory of Molecular Systematics at the National Museum of Natural History. We would like to thank Jon Norenburg and David Swofford for supporting and assisting this research. We would also like to thank Chris Huddleston and Lynn Atkinson for assistance with various aspects of this work; Allison Gong, Doug Eernisse, Cheryl Dean, and Kerstin Wasson for assistance with specimen collection; Peter Foster and the Natural History Museum (London) for access to computational facilities; the SIUC Office of Research Development and Administration and Department of Zoology for financial assistance; and Natalie Heck and two anonymous reviewers for comments on the manuscript. Species identifications and confirmations were performed by David A. Nickle (Research Entomologist, Systematic Entomology Laboratory, Agriculture Research Service, U.S. Department of Agriculture) for Doru lineare, Natalia J. Vandenberg (Entomologist, USDA Systematic Entomology Laboratory) for Harmonia axyridis, and Joseph Beatty (Emeritus Professor of Zoology, SIUC) for Scolopocryptops sexspinosa. This work was supported in part by NSF Grant DEB-0235794 to F.E.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank E. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, F.E., Córdoba, A.J. & Thollesson, M. Bilaterian Phylogeny Based on Analyses of a Region of the Sodium–Potassium ATPase β-Subunit Gene . J Mol Evol 58, 252–268 (2004). https://doi.org/10.1007/s00239-003-2548-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-2548-9

Keywords

Navigation