Skip to main content
Log in

Molecular Evolution of hisB Genes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The sixth and eighth steps of histidine biosynthesis are catalyzed by an imidazole glycerol-phosphate (IGP) dehydratase (EC 4.2.1.19) and by a histidinol-phosphate (HOL-P) phosphatase (EC 3.1.3.15), respectively. In the enterobacteria, in Campylobacter jejuni and in Xylella/Xanthomonas the two activities are associated with a single bifunctional polypeptide encoded by hisB. On the other hand, in Archaea, Eucarya, and most Bacteria the two activities are encoded by two separate genes. In this work we report a comparative analysis of the amino acid sequence of all the available HisB proteins, which allowed us to depict a likely evolutionary pathway leading to the present-day bifunctional hisB gene. According to the model that we propose, the bifunctional hisB gene is the result of a fusion event between two independent cistrons joined by domain-shuffling. The fusion event occurred recently in evolution, very likely in the proteobacterial lineage after the separation of the γ- and the β-subdivisions. Data obtained in this work established that a paralogous duplication event of an ancestral DDDD phosphatase encoding gene originated both the HOL-P phosphatase moiety of the E. coli hisB gene and the gmhB gene coding for a DDDD phosphatase, which is involved in the biosynthesis of a precursor of the inner core of the outer membrane lipopolysaccharides (LPS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. P Alifano R Fani P Liò A Lazcano M Bazzicalupo MS Carlomagno CB Bruni (1996) ArticleTitleHistidine biosynthetic pathway and genes: Structure, regulation and evolution. Microbiol Rev 60 44–69 Occurrence Handle1:CAS:528:DyaK28XitVyrs7c%3D Occurrence Handle8852895

    CAS  PubMed  Google Scholar 

  2. SF Altschul TL Madden AA Schäffer J Zhang Z Zhang W Miller DJ Lipman (1997) ArticleTitleGapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25 3389–3402 Occurrence Handle9254694

    PubMed  Google Scholar 

  3. L Aravind EV Koonin (1998) ArticleTitlePhosphoesterase domains associated with DNA polymerase of diverse origins. Nucleic Acids Res 26 IssueID16 3746–3752 Occurrence Handle10.1093/nar/26.16.3746 Occurrence Handle1:CAS:528:DyaK1cXls1SmtLk%3D Occurrence Handle9685491

    Article  CAS  PubMed  Google Scholar 

  4. DR Brady LL Houston (1973) ArticleTitleSome properties of the catalytic sites of imidazoleglycerolephosphate dehydratase-histidinol posphate phosphatase, a bifunctional enzyme from Salmonella typhimurium. J Biol Chem 248 2588–2592 Occurrence Handle1:CAS:528:DyaE3sXhsFKjs7c%3D Occurrence Handle4349042

    CAS  PubMed  Google Scholar 

  5. M Brilli A Lazcano P Liò R Fani (2002) ArticleTitleStructure and evolution of the histidine biosynthetic pathway. Orig Life Evol Biosph 32 488

    Google Scholar 

  6. JR Broach (1981) Genes of Saccharomyces cerevisiae. JN Strathern EW Jones JR Broach (Eds) The molecular biology of the yeast Saccharomyces: Life cycle and inheritance. Cold Spring Harbor NY 653–727

    Google Scholar 

  7. MS Carlomagno L Chiarotti P Alifano AG Nappo CB Bruni (1988) ArticleTitleStructure of the Salmonella typhimurium and Escherichia coli K-12 histidine operons. J Mol Biol 203 585–606 Occurrence Handle1:CAS:528:DyaK3cXhtFaqtrc%3D Occurrence Handle3062174

    CAS  PubMed  Google Scholar 

  8. FG Chumley JR Roth (1981) ArticleTitleGenetic fusions that place the lactose genes under histidine operon control. J Mol Biol 145 IssueID4 697–712 Occurrence Handle1:CAS:528:DyaL3MXhvVyntLk%3D Occurrence Handle6267294

    CAS  PubMed  Google Scholar 

  9. PH Clarke (1974) The evolution of enzymes for the utilization of novel substrates. MJ Carlile JJ Skehel (Eds) Evolution in the microbial world. Cambridge University Press Cambridge

    Google Scholar 

  10. JR Cole B Chai TL Marsh RJ Farris Q Wang SA Kulam S Chandra DM McGarrell TM Schmidt GM Garrity JM Tiedje (2003) ArticleTitleThe Ribosomal Database Project (RDP-II): Previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31 IssueID1 442–443 Occurrence Handle10.1093/nar/gkg039 Occurrence Handle1:CAS:528:DC%2BD3sXhvFSls7o%3D Occurrence Handle12520046

    Article  CAS  PubMed  Google Scholar 

  11. R Fani M Bazzicalupo G Damiani A Bianchi C Schipani V Sgaramella M Polsinelli (1989) ArticleTitleCloning of the histidine genes of Azospirillum brasilense: Organization of the ABFH gene cluster and nucleotide sequence of the hisB gene. Mol Gen Genet 216 224–229 Occurrence Handle1:CAS:528:DyaK3cXntFSlsw%3D%3D Occurrence Handle2664449

    CAS  PubMed  Google Scholar 

  12. R Fani P Liò A Lazcano (1995) ArticleTitleMolecular evolution of the histidine biosynthetic pathway. J Mol Evol 41 760–774 Occurrence Handle1:CAS:528:DyaK28XivFOjsQ%3D%3D Occurrence Handle8587121

    CAS  PubMed  Google Scholar 

  13. R Fani E Mori E Tamburini A Lazcano (1998) ArticleTitleEvolution of the structure and chromosomal distribution of histidine biosynthetic genes. OLEB 28 555–570 Occurrence Handle10.1023/A:1006531526299 Occurrence Handle1:CAS:528:DyaK1cXmtVWnsbs%3D

    Article  CAS  Google Scholar 

  14. GR Fink (1964) ArticleTitleGene-enzyme relations in histidine biosynthesis in yeast. Science 146 525–527 Occurrence Handle1:CAS:528:DyaF2MXhtVOmsA%3D%3D Occurrence Handle14190241

    CAS  PubMed  Google Scholar 

  15. RD Glaser LL Houston (1974) ArticleTitleSubunit structure and photooxidation of yeast imidazoleglycerolphosphate dehydratase. Biochemistry 13 IssueID25 5145–5152 Occurrence Handle1:CAS:528:DyaE2MXltlaguw%3D%3D Occurrence Handle4611478

    CAS  PubMed  Google Scholar 

  16. TA Hall (1999) ArticleTitleBioEdit: A user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41 95–98 Occurrence Handle1:CAS:528:DC%2BD3cXhtVyjs7Y%3D

    CAS  Google Scholar 

  17. RA Jensen (1976) ArticleTitleEnzyme recruitment in evolution of new function. Annu Rev Microbiol 30 409–425 Occurrence Handle10.1146/annurev.mi.30.100176.002205 Occurrence Handle1:CAS:528:DyaE28XlvVyitLs%3D Occurrence Handle791073

    Article  CAS  PubMed  Google Scholar 

  18. RA Jensen S Ahmad (1990) ArticleTitleNested gene fusions as markers of phylogenetic branchpoints in prokaryotes. Trends Ecol Evol 5 IssueID7 219–224 Occurrence Handle10.1016/0169-5347(90)90135-Z

    Article  Google Scholar 

  19. C Jürgens A Strom D Wegener S Hettwer M Wilmanns R Sterner (2000) ArticleTitleDirected evolution of a (βα)8-barrel enzyme to catalyze related reactions in two different metabolic pathways. Proc Natl Acad Sci USA 97 9925–9930 Occurrence Handle10.1073/pnas.160255397 Occurrence Handle10944186

    Article  PubMed  Google Scholar 

  20. M Kimura (1980) ArticleTitleA simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16 111–120 Occurrence Handle7463489

    PubMed  Google Scholar 

  21. B Kneidinger C Marolda M Graninger A Zamyatina F McArthur P Kosma MA Valvano P Messner (2002) ArticleTitleBiosynthesis pathway of ADP-L-glycero-β-D-manno-heptose in Escherichia coli. J Bacteriol 184 IssueID2 363–369 Occurrence Handle10.1128/JB.184.2.363-369.2002 Occurrence Handle1:CAS:528:DC%2BD38XjtVyksw%3D%3D Occurrence Handle11751812

    Article  CAS  PubMed  Google Scholar 

  22. S Kumar K Tamura IB Jacobsen M Nei (2001) ArticleTitleMEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17 IssueID12 1244–1245 Occurrence Handle1:CAS:528:DC%2BD38XmtVCktQ%3D%3D Occurrence Handle11751241

    CAS  PubMed  Google Scholar 

  23. A Lazcano SL Miller (1996) ArticleTitleThe origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85 793–798 Occurrence Handle1:CAS:528:DyaK28XjslSkurs%3D Occurrence Handle8681375

    CAS  PubMed  Google Scholar 

  24. A Lazcano GE Fox J Oro’ (1992) Life before DNA: The origin and evolution of early Archean cells. RP Mortlock (Eds) The evolution of metabolic function. CRC Press Boca Raton FL 237–339

    Google Scholar 

  25. D Le Coq S Fillinger S Aymerich (1999) ArticleTitleHistidinol phosphate phosphatase, catalyzing the penultimate step of the histidine biosynthesis pathway, is encoded by ytvP (hisJ) in Bacillus subtilis. J Bacteriol 181 IssueID10 3277–3280 Occurrence Handle1:CAS:528:DyaK1MXjt1yrsbc%3D Occurrence Handle10322033

    CAS  PubMed  Google Scholar 

  26. D Limauro A Avitabile C Cappellano AM Puglia CB Bruni (1990) ArticleTitleCloning and characterization of the histidine biosynthetic gene cluster of Streptomyces coelicolor A3(2) Gene 90 IssueID1 31–41 Occurrence Handle10.1016/0378-1119(90)90436-U Occurrence Handle1:CAS:528:DyaK3MXhvVWksw%3D%3D Occurrence Handle2199329

    Article  CAS  PubMed  Google Scholar 

  27. JC Loper (1961) ArticleTitleEnzyme complementation in mixed extracts of mutants from the Salmonella histidine B locus. Proc Natl Acad Sci USA 47 1440–l450 Occurrence Handle1:CAS:528:DyaF38Xislarug%3D%3D Occurrence Handle13763426

    CAS  PubMed  Google Scholar 

  28. RE Malone S Kim SA Bullard S Lundquist L Hutchings-Crow S Cramton L Lutfiyya J Lee (1994) ArticleTitleAnalysis of a recombination hotspot for gene conversion occurring at the HIS2 gene of Saccharomyces cerevisiae. Genetics 137 IssueID1 5–18 Occurrence Handle1:CAS:528:DyaK2cXmvFCjt7g%3D Occurrence Handle8056323

    CAS  PubMed  Google Scholar 

  29. AC Morales SR Nozawa Jr G Thedei Jr W Maccheroni A Rossi (2000) ArticleTitleProperties of a constitutive alkaline phosphatase from strain 74A of the mold Neurospora crassa. Braz J Med Biol Res 33 905–912 Occurrence Handle1:CAS:528:DC%2BD3cXmsFOlsLw%3D Occurrence Handle10920432

    CAS  PubMed  Google Scholar 

  30. RP Mortlock MA Gallo (1992) Experiments in the evolution of gatabolic pathways using modern bacteria. RP Mortlock (Eds) The evolution of metabolic functions. CRC Press Boca Raton, FL 1–13

    Google Scholar 

  31. M Nei S Kumar (2000) Molecular evolution and phylogenetics. Oxford University Press New York

    Google Scholar 

  32. J Peretò R Fani JI Leguina A Lazcano (1998) Enzyme evolution and the development of metabolic pathways. A Cornish-Bowden (Eds) New beer in an old bottle: Eduard Buchner and the growth of biochemical knowledge. Universitat de Valencia Valencia 173–198

    Google Scholar 

  33. S Shigenobu H Watanabe M Hattori Y Sakaki H Ishikawa (2000) ArticleTitleGenome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407 IssueID6800 81–86 Occurrence Handle10.1038/35024074 Occurrence Handle1:CAS:528:DC%2BD3cXmslelu7o%3D

    Article  CAS  Google Scholar 

  34. MC Thaller S Schippa GM Rossolini (1998) ArticleTitleConserved sequence motifs among bacterial, eukaryotic, and archaeal phosphatases that define a new phosphohydrolase superfamily. Protein Sci 7 IssueID7 1647–1652 Occurrence Handle1:CAS:528:DyaK1cXks1eqtbk%3D Occurrence Handle9684901

    CAS  PubMed  Google Scholar 

  35. JD Thompson DG Higgins TJ Gibson (1994) ArticleTitleCLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight-matrix choice. Nucleic Acids Res 22 4673–4680 Occurrence Handle7984417

    PubMed  Google Scholar 

  36. JR Vance TE Wilson (2001) ArticleTitleUncoupling of 3’-phosphatase and 5’-kinase functions in budding yeast. J Biol Chem 276 IssueID18 15073–15081 Occurrence Handle10.1074/jbc.M011075200 Occurrence Handle1:CAS:528:DC%2BD3MXjs1OrsLY%3D Occurrence Handle11278831

    Article  CAS  PubMed  Google Scholar 

  37. ME Winkler (1987) Biosynthesis of histidine. FC Neidhardt JL Ingraham KB Low B Magasanik M Schaechter HD Humbarger (Eds) Escherichia coli and Salmonella typhimurium: Cellular and molecular biology. ASM Press Washington, DC 395–411

    Google Scholar 

  38. M Ycas (1974) ArticleTitleOn the earlier states of the biochemical system. J Theor Biol 44 145–160 Occurrence Handle1:CAS:528:DyaE2cXhtFOhur4%3D Occurrence Handle4207200

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to three anonymous reviewers for their helpful comments and suggestions on improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Fani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brilli, M., Fani, R. Molecular Evolution of hisB Genes . J Mol Evol 58, 225–237 (2004). https://doi.org/10.1007/s00239-003-2547-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-2547-x

Keywords

Navigation