Skip to main content
Log in

Strand Compositional Asymmetries of Nuclear DNA in Eukaryotes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Both DNA replication and transcription are structurally asymmetric processes. An asymmetric nucleotide substitution pattern has been observed between the leading and the lagging strand, and between the coding and the noncoding strand, in eubacterial, viral, and organelle genomes. Similar studies in eukaryotes have been rare, because the origins of replication in nuclear genomes are mostly unknown and the replicons are much shorter than those of prokaryotes. To circumvent these predicaments, all possible pairs of neighboring genes that are located on different strands of nuclear DNA were selected from the complete genomes of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Plasmodium falciparum, Encephalitozoon cuniculi, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Anopheles gambiae, Mus musculus, and Homo sapiens. For such a pair of genes, one is likely coded from the leading strand and the other from the lagging strand. By examining the introns and the fourfold degenerate sites of codons in the genes of each pair, we found that the relative frequencies of T vs. A and of G vs. C are significantly skewed in most eukaryotes studied. In a gene pair, the potential effects of replication- and transcription-associated mutation bias on strand asymmetry are in the same direction for one gene where leading strand synthesis shares the same template with transcription, while they tend to be canceled out in the other gene. Our study demonstrates that DNA replication-associated and transcription-associated mutation bias and/or selective codon usage bias may affect the strand nucleotide composition asymmetrically in eukaryotic genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. MD Adams SE Celniker RA Holt et al. (2000) ArticleTitleThe genome sequence of Drosophila melanogaster. Science 287 2185–2195 Occurrence Handle10.1126/science.287.5461.2185 Occurrence Handle10731132

    Article  PubMed  Google Scholar 

  2. A Beletskii AS Bhagwat (2001) ArticleTitleTranscription-induced cytosine-to-thymine mutations are not dependent on sequence context of the target cytosine. J Bacteriol 183 6491–6493 Occurrence Handle10.1128/JB.183.21.6491-6493.2001 Occurrence Handle11591695

    Article  PubMed  Google Scholar 

  3. FR Blattner G Plunkett III CA Bloch et al. (1997) ArticleTitleThe complete genome sequence of Escherichia coli K-12. Science 277 1453–1462 Occurrence Handle1:CAS:528:DyaK2sXlvVGnu78%3D Occurrence Handle9278503

    CAS  PubMed  Google Scholar 

  4. BJ Brewer WL Fangman (1993) ArticleTitleInitiation at closely spaced replication origins in a yeast chromosome. Science 262 1728–1731 Occurrence Handle8259517

    PubMed  Google Scholar 

  5. M Bulmer (1991) ArticleTitleStrand symmetry of mutation-rates in the beta-globin region. J Mol Evol 33 305–310 Occurrence Handle1774785

    PubMed  Google Scholar 

  6. LW Buss (1987) The evolution of individuality. Princeton University Press Princeton, NJ

    Google Scholar 

  7. IJ Fijalkowska P Jonczyk MM Tkaczyk M Bialoskorska RM Schaaper (1998) ArticleTitleUnequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. Proc Natl Acad Sci USA 95 10020–10025 Occurrence Handle10.1073/pnas.95.17.10020 Occurrence Handle9707593

    Article  PubMed  Google Scholar 

  8. MP Francino H Ochman (2000) ArticleTitleStrand symmetry around the β-globin origin of replication in primates. Mol Biol Evol 17 416–422 Occurrence Handle10723742

    PubMed  Google Scholar 

  9. MP Francino H Ochman (2001) ArticleTitleDeamination as the basis of strand-asymmetric evolution in transcribed Escherichia coli sequences. Mol Biol Evol 18 1147–1150 Occurrence Handle11371605

    PubMed  Google Scholar 

  10. AC Frank JR Lobry (1999) ArticleTitleAsymmetric substitution patterns: A review of possible underlying mutational or selective mechanisms. Gene 238 65–77 Occurrence Handle10.1016/S0378-1119(99)00297-8 Occurrence Handle10570985

    Article  PubMed  Google Scholar 

  11. CM Fraser S Casjens WM Huang et al. (1997) ArticleTitleGenomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390 580–586 Occurrence Handle1:CAS:528:DyaK2sXotVCitbs%3D Occurrence Handle9403685

    CAS  PubMed  Google Scholar 

  12. LA Frederico TA Kunkel BR Shaw (1990) ArticleTitleA sensitive genetic assay for the detection of cytosine deamination: Determination of rate constants and the activation energy. Biochemistry 29 2532–2537 Occurrence Handle2185829

    PubMed  Google Scholar 

  13. MJ Gardner N Hall E Fung et al. (2002) ArticleTitleGenome sequence of the human malaria parasite Plasmodium falciparum. Nature 419 498–511 Occurrence Handle10.1038/nature01097 Occurrence Handle1:CAS:528:DC%2BD38XnsFais7Y%3D Occurrence Handle12368864

    Article  CAS  PubMed  Google Scholar 

  14. D Gawel P Jonczyk M Bialoskorska RM Schaaper IJ Fijalkowska (2002) ArticleTitleAsymmetry of frameshift mutagenesis during leading and lagging-strand replication in Escherichia coli. Mutat Res 501 129–136 Occurrence Handle10.1016/S0027-5107(02)00020-9 Occurrence Handle11934444

    Article  PubMed  Google Scholar 

  15. A Gierlik M Kowalczuk P Mackiewicz MR Dudek S Cebrat (2000) ArticleTitleIs there replication-associated mutational pressure in the Saccharomyces cerevisiae genome? J Theor Biol 202 305–314 Occurrence Handle10.1006/jtbi.1999.1062 Occurrence Handle10666362

    Article  PubMed  Google Scholar 

  16. A Goffeau BG Barrell H Bussey et al. (1996) ArticleTitleLife with 6000 genes. Science 274 546–567 Occurrence Handle1:CAS:528:DyaK28XmsVWlt7k%3D Occurrence Handle8849441

    CAS  PubMed  Google Scholar 

  17. D Graur W-H Li (2000) Fundamentals of molecular evolution. Sinauer Associates Sunderland, MA

    Google Scholar 

  18. P Green B Ewing W Miller et al. (2003) ArticleTitleTranscription-associated mutational asymmetry in mammalian evolution. Nature Genet 33 514–517 Occurrence Handle10.1038/ng1103 Occurrence Handle12612582

    Article  PubMed  Google Scholar 

  19. A Grigoriev (1998) ArticleTitleAnalyzing genomes with cumulative skew diagrams. Nucleic Acids Res 26 2286–2290 Occurrence Handle10.1093/nar/26.10.2286 Occurrence Handle9580676

    Article  PubMed  Google Scholar 

  20. A Grigoriev (1999) ArticleTitleStrand-specific compositional asymmetries in double-stranded DNA viruses. Virus Res 60 1–19 Occurrence Handle10.1016/S0168-1702(98)00139-7 Occurrence Handle10225270

    Article  PubMed  Google Scholar 

  21. RA Holt GM Subramanian A Halpern et al. (2002) ArticleTitleThe genome sequence of the malaria mosquito Anopheles gambiae. Science 298 129–149 Occurrence Handle10.1126/science.1076181 Occurrence Handle1:CAS:528:DC%2BD38XnsFSgsr8%3D Occurrence Handle12364791

    Article  CAS  PubMed  Google Scholar 

  22. O Hyrien K Marheineke A Goldar (2003) ArticleTitleParadoxes of eukaryotic DNA replication: MCM proteins and the random completion problem. Bioessays 25 116–125 Occurrence Handle10.1002/bies.10208 Occurrence Handle12539237

    Article  PubMed  Google Scholar 

  23. InstitutionalAuthorNameInternational Human Genome Sequencing Consortium (2001) ArticleTitleInitial sequencing and analysis of the human genome. Nature 409 860–921 Occurrence Handle1:CAS:528:DC%2BD3MXhsFCjtLc%3D Occurrence Handle11237011

    CAS  PubMed  Google Scholar 

  24. S Izuta JD Roberts TA Kunkel (1995) ArticleTitleReplication error rates for G·GTP, T · GTP, and A · GTP mispairs and evidence for differential proofreading by leading and lagging strand DNA replication complexes in human cells. J Biol Chem 270 2595–2600 Occurrence Handle10.1074/jbc.270.6.2595 Occurrence Handle7852323

    Article  PubMed  Google Scholar 

  25. MD Katinka S Duprat E Cornillot et al. (2001) ArticleTitleGenome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414 450–453 Occurrence Handle10.1038/35106579 Occurrence Handle1:CAS:528:DC%2BD3MXovFamsbo%3D Occurrence Handle11719806

    Article  CAS  PubMed  Google Scholar 

  26. M Kowalczuk P Mackiewicz D Mackiewicz A Nowicka M Dudkiewicz MR Dudek S Cebrat (2001) ArticleTitleDNA asymmetry and the replicational mutational pressure. J Appl Genet 42 553–577 Occurrence Handle14564030

    PubMed  Google Scholar 

  27. TA Kunkel (1992) ArticleTitleBiological asymmetries and the fidelity of eukaryotic DNA replication. Bioessays 14 303–308 Occurrence Handle1:CAS:528:DyaK38Xlt1Gnsbs%3D Occurrence Handle1637361

    CAS  PubMed  Google Scholar 

  28. F Kunst N Ogasawara I Moszer et al. (1997) ArticleTitleThe complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390 249–256 Occurrence Handle1:CAS:528:DyaK2sXnsVyqtrY%3D Occurrence Handle9384377

    CAS  PubMed  Google Scholar 

  29. B Lewin (1997) Genes VI. Oxford University Press Oxford

    Google Scholar 

  30. JR Lobry (1995) ArticleTitleProperties of a general-model of DNA evolution under no-strand-bias conditions. J Mol Evol 40 326–330 Occurrence Handle1:CAS:528:DyaK2MXksl2gsLw%3D Occurrence Handle7723059

    CAS  PubMed  Google Scholar 

  31. JR Lobry (1996a) ArticleTitleAsymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13 660–665

    Google Scholar 

  32. JR Lobry (1996b) ArticleTitleA simple vectorial representation of DNA sequences for the detection of replication origins in bacteria. Biochimie 78 323–326

    Google Scholar 

  33. JR Lobry C Lobry (1999) ArticleTitleEvolution of DNA base composition under no-strand-bias conditions when the substitution rates are not constant. Mol Biol Evol 16 719–723 Occurrence Handle10368950

    PubMed  Google Scholar 

  34. MJ McLean KH Wolfe KM Devine (1998) ArticleTitleBase composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J Mol Evol 47 691–696 Occurrence Handle9847411

    PubMed  Google Scholar 

  35. InstitutionalAuthorNameMouse Genome Sequencing Consortium (2002) ArticleTitleInitial sequencing and comparative analysis of the mouse genome. Nature 420 520–562 Occurrence Handle10.1038/nature01262 Occurrence Handle12466850

    Article  PubMed  Google Scholar 

  36. J Mrazek S Karlin (1998) ArticleTitleStrand compositional asymmetry in bacterial and large viral genomes. Proc Natl Acad Sci USA 95 3720–3725 Occurrence Handle10.1073/pnas.95.7.3720 Occurrence Handle9520433

    Article  PubMed  Google Scholar 

  37. M Picardeau JR Lobry BJ Hinnebusch (2000) ArticleTitleAnalyzing DNA strand compositional asymmetry to identify candidate replication origins of Borrelia burgdorferi linear and circular plasmids. Genome Res 10 1594–1604 Occurrence Handle10.1101/gr.124000 Occurrence Handle11042157

    Article  PubMed  Google Scholar 

  38. MK Raghuraman EA Winzeler D Collingwood et al. (2001) ArticleTitleReplication dynamics of the yeast genome. Science 294 115–121 Occurrence Handle1:CAS:528:DC%2BD3MXnsFyitr8%3D Occurrence Handle11588253

    CAS  PubMed  Google Scholar 

  39. A Reyes C Gissi G Pesole C Saccone (1998) ArticleTitleAsymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15 957–966 Occurrence Handle9718723

    PubMed  Google Scholar 

  40. EPC Rocha A Danchin (2001) ArticleTitleOngoing evolution of strand composition in bacterial genomes. Mol Biol Evol 18 1789–1799 Occurrence Handle11504858

    PubMed  Google Scholar 

  41. EPC Rocha A Danchin A Viari (1999) ArticleTitleUniversal replication biases in bacteria. Mol Microbiol 32 11–16 Occurrence Handle10.1046/j.1365-2958.1999.01334.x Occurrence Handle10216855

    Article  PubMed  Google Scholar 

  42. C Shioiri N Takahata (2001) ArticleTitleSkew of mononucleotide frequencies, relative abundance of dinucleotides, and DNA strand asymmetry. J Mol Evol 53 364–376 Occurrence Handle10.1007/s002390010226 Occurrence Handle11675596

    Article  PubMed  Google Scholar 

  43. N Sueoka (1995) ArticleTitleIntrastrand parity rules of DNA-base composition and usage biases of synonymous codons. J Mol Evol 40 318–325 Occurrence Handle1:CAS:528:DyaK2MXksl2gsL8%3D Occurrence Handle7723058

    CAS  PubMed  Google Scholar 

  44. InstitutionalAuthorNameThe Arabidopsis Genome Initiative (2000) ArticleTitleAnalysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 796–815 Occurrence Handle11130711

    PubMed  Google Scholar 

  45. InstitutionalAuthorNameThe C. elegans Sequencing Consortium (1998) ArticleTitleGenome sequence of the nematode C. elegans: A platform for investigating biology. Science 282 2012–2018 Occurrence Handle9851916

    PubMed  Google Scholar 

  46. ERM Tillier RA Collins (2000) ArticleTitleThe contributions of replication orientation, gene direction, and signal sequences to base-composition asymmetries in bacterial genomes. J Mol Evol 50 249–257 Occurrence Handle10754068

    PubMed  Google Scholar 

  47. V Wood R Gwilliam MA Rajandream et al. (2002) ArticleTitleThe genome sequence of Schizosaccharomyces pombe. Nature 415 871–880 Occurrence Handle1:CAS:528:DC%2BD38Xhs1ygtbk%3D Occurrence Handle11859360

    CAS  PubMed  Google Scholar 

  48. CI Wu N Maeda (1987) ArticleTitleInequality in mutation-rates of the 2 strands of DNA. Nature 327 169–170 Occurrence Handle1:CAS:528:DyaL2sXktlGhtr8%3D Occurrence Handle3574477

    CAS  PubMed  Google Scholar 

  49. JJ Wyrick JG Aparicio T Chen JD Barnett EG Jennings RA Young SP Bell OM Aparicio (2001) ArticleTitleGenome-wide distribution of ORC and MCM proteins in S. cerevisiae: High-resolution mapping of replication origins. Science 294 2357–2360 Occurrence Handle1:CAS:528:DC%2BD3MXptFGrtbw%3D Occurrence Handle11743203

    CAS  PubMed  Google Scholar 

  50. A Zawilak S Cebrat P Mackiewicz A Krol-Hulewicz D Jakimowicz W Messer G Gosciniak J Zakrzewska-Czerwinska (2001) ArticleTitleIdentification of a putative chromosomal replication origin from Helicobacter pylori and its interaction with the initiator protein DnaA. Nucleic Acids Res 29 2251–2259 Occurrence Handle10.1093/nar/29.11.2251 Occurrence Handle11376143

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. O. Hyrien for kindly sending us a preprint before publication and the anonymous referees for their helpful comments. The research was supported by the NSFC (Grants 30270695, 30240026, and 30125008) and China Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, D.K., Lin, K. & Zhang, DY. Strand Compositional Asymmetries of Nuclear DNA in Eukaryotes . J Mol Evol 57, 325–334 (2003). https://doi.org/10.1007/s00239-003-2483-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-2483-9

Keywords

Navigation