Skip to main content

Advertisement

Log in

Peptide-Templated Nucleic Acid Ligation

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Short oligonucleotide and peptide replicators have been described. To determine whether cross-replication could have occurred between such systems, we have attempted to show that peptides can specifically template the ligation of nucleic acids. A complex between a 35-mer anti-Rev RNA aptamer and a 17-mer arginine-rich motif (ARM) peptide from the HIV-1 Rev protein served as a model system. Aptamer half-molecules were activated for ligation via two activation chemistries, representing two distinct kinetic possibilities for early replicators. Cyanogen bromide activation was transient relative to oligonucleotides that terminated with a 5′-iodine and a 3′phosphorothioate, respectively. The Rev ARM specifically enhanced the degree or rate of ligation by both methods: there was a 10-fold increase in the production of full-length aptamer in the presence of cyanogen bromide and a 5.9- to 7.6-fold enhancement in the rate of ligation for stably activated aptamer half-molecules. These results support the possibility that life could have originated with peptide replicators and transitioned to nucleic acid replicators or that peptide and nucleic acid replicators could have been interdependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, M., Ellington, A. Peptide-Templated Nucleic Acid Ligation . J Mol Evol 56, 607–615 (2003). https://doi.org/10.1007/s00239-002-2429-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-002-2429-7

Navigation