Skip to main content

Advertisement

Log in

Vessel wall MR imaging of central nervous system vasculitis: a systematic review

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Beyond vessel wall enhancement, little is understood about vessel wall MR imaging (VW-MRI) features of vasculitis affecting the central nervous system (CNS). We reviewed vessel wall MR imaging patterns of inflammatory versus infectious vasculitis and also compared imaging patterns for intracranial versus extracranial arteries of the head and neck.

Methods

Studies reporting vasculitis of the CNS/head and neck and included MR imaging descriptions of vessel wall features were identified by searching PubMed, Scopus, Cochrane, Web of Science, and EMBASE up to June 10, 2020. From 6065 publications, 115 met the inclusion criteria. Data on study characteristics, vasculitis type, MR details, and VW-MRI descriptions were extracted.

Results

Studies used VW-MRI for inflammatory (64%), infectious (17%), or both inflammatory and infectious vasculitides (19%). Vasculitis affecting intracranial versus extracranial arteries were reported in 58% and 39% of studies, respectively. Commonly reported VW-MRI features were vessel wall enhancement (89%), thickening (72%), edema (10%), and perivascular enhancement (16%). Inflammatory vasculitides affecting the intracranial arteries were less frequently reported to have vessel wall thickening (p = 0.006) and perivascular enhancement (p = 0.001) than extracranial arteries. Varicella zoster/herpes simplex vasculitis (VZV/HSV, 45%) and primary angiitis of the CNS (PACNS, 22%) were the most commonly reported CNS infectious and inflammatory vasculitides, respectively. Patients with VZV/HSV vasculitis more frequently showed decreased or resolution of vessel wall enhancement after therapy compared to PACNS (89% versus 59%).

Conclusions

To establish imaging biomarkers of vessel wall inflammation in the CNS, VW-MRI features of vasculitis accounting for disease mechanism and anatomy should be better understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lindenholz A, van der Kolk AG, Zwanenburg JJM, Hendrikse J (2018) The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology 286:12–28. https://doi.org/10.1148/radiol.2017162096

    Article  PubMed  Google Scholar 

  2. Aydin F (1998) Do human intracranial arteries lack vasa vasorum? A comparative immunohistochemical study of intracranial and systemic arteries. Acta Neuropathol 96:22–28. https://doi.org/10.1007/s004010050856

    Article  CAS  PubMed  Google Scholar 

  3. Mossa-Basha M, Shibata DK, Hallam DK, de Havenon A, Hippe DS, Becker KJ et al (2017) Added value of vessel wall magnetic resonance imaging for differentiation of nonocclusive intracranial vasculopathies. Stroke 48:3026–3033. https://doi.org/10.1161/STROKEAHA.117.018227

    Article  PubMed  PubMed Central  Google Scholar 

  4. Riley DS, Barber MS, Kienle GS, Aronson JK, von Schoen-Angerer T, Tugwell P et al (2017) CARE guidelines for case reports: explanation and elaboration document. J Clin Epidemiol 89:218–235. https://doi.org/10.1016/j.jclinepi.2017.04.026

    Article  PubMed  Google Scholar 

  5. Maruyama Y, Kitagawa N, Ito M, Yoshikazi T (2013) A case of early Takayasu’s arteritis with initial symptoms of carotidynia and fever. Nihon Jibiinkoka Gakkai Kaiho 116:709–714. https://doi.org/10.3950/jibiinkoka.116.709

    Article  PubMed  Google Scholar 

  6. Namitome S, Shindo S, Wada K, Terasaki T, Nakajima M, Ando Y (2018) Cerebral infarction related to varicella zoster virus vasculopathy. Rinsho Shinkeigaku 58:182–187. https://doi.org/10.5692/clinicalneurol.cn-001117

    Article  PubMed  Google Scholar 

  7. Xie S-S, Cheng J-L, Zhang Y (2013) Depiction of arterial wall by high-resolution MRI in cerebral arteritis: a case report. Chin J Radiol 47:947–949

    Google Scholar 

  8. Liu XS, Xu JR, Zhao HL, Cheng F, Lu Q (2010) Role of 3.0T MR vessel wall imaging for identifying the activity of Takayasu arteritis. Chin J Radiol 44:44–47

    CAS  Google Scholar 

  9. Adolfo DCA, Francisca MS, Roberto MZ, Luis CR (2018) Arteritis de células gigantes en el sistema vertebrobasilar, isquemias cerebelo-occipitales y parálisis III par. Caso clínico Rev Médica Chile 146:1356–1360. https://doi.org/10.4067/S0034-98872018001101356

    Article  Google Scholar 

  10. Bley TA, Uhl M, Carew J, Markl M, Schmidt D, Peter H-H et al (2007) Diagnostic value of high-resolution MR imaging in giant cell arteritis. Am J Neuroradiol 28:1722–1727. https://doi.org/10.3174/ajnr.A0638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goll C, Thormann M, Hofmüller W, Friebe B, Behrens-Baumann W, Bley TA et al (2016) Feasibility study: 7 T MRI in giant cell arteritis. Graefes Arch Clin Exp Ophthalmol 254:1111–1116. https://doi.org/10.1007/s00417-016-3337-7

    Article  PubMed  Google Scholar 

  12. Veldhoen S, Klink T, Geiger J, Vaith P, Glaser C, Ness T et al (2014) MRI displays involvement of the temporalis muscle and the deep temporal artery in patients with giant cell arteritis. Eur Radiol 24:2971–2979. https://doi.org/10.1007/s00330-014-3255-1

    Article  PubMed  Google Scholar 

  13. Perez FA, Oesch G, Amlie-Lefond CM (2020) MRI vessel wall enhancement and other imaging biomarkers in pediatric focal cerebral arteriopathy-inflammatory subtype. Stroke 51:853–859. https://doi.org/10.1161/STROKEAHA.119.027917

    Article  CAS  PubMed  Google Scholar 

  14. Thaler C, Kaufmann-Bühler A-K, Gansukh T, Gansukh A, Schuster S, Bachmann H et al (2019) Neuroradiologic characteristics of primary angiitis of the central nervous system according to the affected vessel size. Clin Neuroradiol 29:37–44. https://doi.org/10.1007/s00062-017-0622-8

    Article  PubMed  Google Scholar 

  15. Klink T, Geiger J, Both M, Ness T, Heinzelmann S, Reinhard M et al (2014) Giant cell arteritis: diagnostic accuracy of mr imaging of superficial cranial arteries in initial diagnosis—results from a multicenter trial. Radiology 273:844–852. https://doi.org/10.1148/radiol.14140056

    Article  PubMed  Google Scholar 

  16. Geiger J, Ness T, Uhl M, Lagreze WA, Vaith P, Langer M et al (2009) Involvement of the ophthalmic artery in giant cell arteritis visualized by 3T MRI. Rheumatology 48:537–541. https://doi.org/10.1093/rheumatology/kep011

    Article  PubMed  Google Scholar 

  17. Hauenstein C, Reinhard M, Geiger J, Markl M, Hetzel A, Treszl A et al (2012) Effects of early corticosteroid treatment on magnetic resonance imaging and ultrasonography findings in giant cell arteritis. Rheumatology 51:1999–2003. https://doi.org/10.1093/rheumatology/kes153

    Article  CAS  PubMed  Google Scholar 

  18. Van Rooij JL, Rutgers DR, Spliet WG, Frijns CJ (2018) Vessel wall enhancement on MRI in the diagnosis of primary central nervous system vasculitis. Int J Stroke 13:24–27. https://doi.org/10.1177/1747493018789276

    Article  Google Scholar 

  19. Takahashi I, Ishihara M, Oishi T, Yamamoto M, Narita M, Fujieda M (2018) Common carotid arteritis and polymyalgia with Mycoplasma pneumoniae infection. J Infect Chemother 25:281–284. https://doi.org/10.1016/j.jiac.2018.09.001

    Article  PubMed  Google Scholar 

  20. Cheah PL, Rahmat K, Kadir KAA, Lim K-S, Yahya F, Tai M-LS (2019) Disseminated Takayasu arteritis with neurovascular small and medium vessel involvement. Neurol Asia 24:53–59

    Google Scholar 

  21. Eshet Y, Pauzner R, Goitein O, Langevitz P, Eshed I, Hoffman C et al (2011) The limited role of MRI in long-term follow-up of patients with Takayasu’s arteritis. Autoimmun Rev 11:132–136. https://doi.org/10.1016/j.autrev.2011.09.002

    Article  PubMed  Google Scholar 

  22. Meller J, Grabbe E, Becker W, Vosshenrich R (2003) Value of F-18 FDG hybrid camera PET and MRI in early Takayasu aortitis. Eur Radiol 13:400–405. https://doi.org/10.1007/s00330-002-1518-8

    Article  CAS  PubMed  Google Scholar 

  23. Yashima A, Yamashita H, Yamada S, Noguchi T, Takahashi Y, Kaneko H (2018) A case of giant cell arteritis mimicking vertebral dissection on contrast-enhanced magnetic resonance angiography. Clin Exp Rheumatol 36(Suppl 111):S178-179

    Google Scholar 

  24. Stengl KL, Buchert R, Bauknecht H, Sobesky J (2013) A hidden giant: Wallenberg syndrome and aortal wall thickening as an atypical presentation of a giant cell arteritis. Case Rep 2013:bcr2012006994–bcr2012006994. https://doi.org/10.1136/bcr-2012-006994

    Article  Google Scholar 

  25. Tanaka A, Hida T, Soeda H, Masumoto H, Matsuura T (2010) Two cases of giant cell arteritis, detected by conventional MRI studies. Neuroradiology 52:663–685

    Article  Google Scholar 

  26. Goh Y, Yeo LLL, Teng GG, Quek AML, Tan CWT, Lim AYN (2019) 114 A conundrum: primary angiitis of the central nervous system associated with Kikuchi-Fujimoto disease and undifferentiated connective tissue disease. Rheumatology 58(kez108):022. https://doi.org/10.1093/rheumatology/kez108.022

    Article  Google Scholar 

  27. Wang L-J, Kong D-Z, Guo Z-N, Zhang F-L, Zhou H-W, Yang Y (2019) Study on the clinical, imaging, and pathological characteristics of 18 cases with primary central nervous system vasculitis. J Stroke Cerebrovasc Dis 28:920–928. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.12.007

    Article  PubMed  Google Scholar 

  28. Saliou G, Tardieu M, Theaudin M, Power S, Deiva K (2016) Vessel wall contrast enhancement on magnetic resonance imaging may be suggestive for future development of further arterial changes. Can J Neurol Sci J Can Sci Neurol 43:728–730. https://doi.org/10.1017/cjn.2016.251

    Article  Google Scholar 

  29. Watanabe K, Rajderkar DA, Modica RF (2016) A case of polyarteritis nodosa associated with vertebral artery vasculitis treated successfully with tocilizumab and cyclophosphamide. Case Rep Pediatr 2016:1–10. https://doi.org/10.1155/2016/7987081

    Article  Google Scholar 

  30. Taricani Kubota G, de Faria FR, Rocha Figueiredo T, dos Santos GT, Morais LMTS, Alencar BJ et al (2017) High resolution vessel wall magnetic resonance imaging in HIV associated vasculopathy. J Neurol Sci 381:421–422. https://doi.org/10.1016/j.jns.2017.08.3403

    Article  Google Scholar 

  31. Dargazanli C, Menjot de Champfleur N, Corlobé A, Bonafe A, Labauge P, Thouvenot E et al (2016) HIV-associated vasculopathy: potential pitfall for IV thrombolysis and indication for vessel wall imaging. J Neuroradiol 43:415–417. https://doi.org/10.1016/j.neurad.2016.04.002

    Article  PubMed  Google Scholar 

  32. Gabr A, El Kholy K, Crotty J, O’Connor M, Chaila E (2016) Giant cell arteritis presenting with bilateral subdural haematomas of arterial origin Eur J Case Rep. Intern Med 3:7. https://doi.org/10.12890/2016_000441

    Article  Google Scholar 

  33. Bley TA, Warnatz K, Wieben O, Uhl M, Scholz C, Vaith P et al (2005) High-resolution MRI in giant cell arteritis with multiple inflammatory stenoses in both calves. Rheumatology 44:954–955. https://doi.org/10.1093/rheumatology/keh646

    Article  CAS  PubMed  Google Scholar 

  34. Bley TA, Wieben O, Uhl M, Miehle N, Langer M, Hennig J et al (2005) Integrated head-thoracic vascular MRI at 3 T: assessment of cranial, cervical and thoracic involvement of giant cell arteritis. Magn Reson Mater Phys Biol Med 18:193–200. https://doi.org/10.1007/s10334-005-0119-3

    Article  CAS  Google Scholar 

  35. Eiden S, Beck C, Venhoff N, Elsheikh S, Ihorst G, Urbach H et al (2019) High-resolution contrast-enhanced vessel wall imaging in patients with suspected cerebral vasculitis: prospective comparison of whole-brain 3D T1 SPACE versus 2D T1 black blood MRI at 3 Tesla. PLoS ONE 14:e0213514. https://doi.org/10.1371/journal.pone.0213514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsivgoulis G, Papadimitropoulos GN, Lachanis S, Palaiodimou L, Zompola C, Antonellou R et al (2018) High-resolution intracranial vessel wall imaging in monitoring treatment response in primary CNS angiitis. Neurologist 23:188–190. https://doi.org/10.1097/NRL.0000000000000198

    Article  PubMed  Google Scholar 

  37. Seliverstova E, Dobrynina L, Krotenkova M, Kalashnikova L (2013) P1.110 Magnetic resonance imaging in diagnosis of vasculitis of internal carotid, vertebral and basilar arteries. Neuroradiology 55:S117–S118

    Google Scholar 

  38. MacLellan A, Kraler L, Schwartz N, Lee S (2019) Clinicoradiographic course of focal intracranial arteriopathy in young adults (P2.3–066). Neurology 92:P2.3-066

    Google Scholar 

  39. Unnikrishnan G, Hiremath N, Chandrasekharan K, Sreedharan SE, Sylaja PN (2018) Cerebral large-vessel vasculitis in Sjogren’s syndrome: utility of high-resolution magnetic resonance vessel wall imaging. J Clin Neurol 14:588. https://doi.org/10.3988/jcn.2018.14.4.588

    Article  PubMed  PubMed Central  Google Scholar 

  40. Grisold A, Sommer P, Krichmayr M, Fertl E, Greisenegger S, Serles W (2015) ESOC-1308 An unusual cause of carotid-occlusion and stroke in a young woman. Int J Stroke 10:397

    Google Scholar 

  41. Choe YH, Kim D-K, Koh E-M, Do YS, Lee WR (1999) Takayasu arteritis: diagnosis with MR imaging and MR angiography in acute and chronic active stages. J Magn Reson Imaging 10:751–757. https://doi.org/10.1002/(sici)1522-2586(199911)10:5%3c751::aid-jmri20%3e3.0.co;2-y

    Article  CAS  PubMed  Google Scholar 

  42. Nazarova N, Fedorov K (2015) F3020 Herpes simplex virus (HSV)-associated vasculitis presenting as a stroke in a young patient. Eur J Neurol 22:691. https://doi.org/10.1111/ene.12808

    Article  Google Scholar 

  43. Nazarova N, Fedorov K, Gebert S, Novikov P, Moiseev S (2015) Stroke related to herpes simplex virus associated vasculitis of cerebral arteries. Nephron 129:238–239

    Google Scholar 

  44. Lu T, Zou Y, Jiang T, Yang Y, Wu A, Chen H et al (2020) Intracranial artery injury in HIV-negative tuberculous meningitis: a high-resolution vessel wall imaging study. Clin Neuroradiol 30:381–388. https://doi.org/10.1007/s00062-019-00766-4

    Article  PubMed  Google Scholar 

  45. Rodriguez-Régent C, Hassen WB, Seners P, Oppenheim C, Régent A (2020) 3D T1-weighted black-blood magnetic resonance imaging for the diagnosis of giant cell arteritis. Clin Exp Rheumatol 38:S95–S98

    Google Scholar 

  46. Tamanini JG, Feitoza L, Gonçalves IC, Silva NN, Altemani A, Fabbro MD et al (2019) Magnetic resonance imaging vessel wall sequences in the detection of mucormycosis-associated vasculitis: a new sequence to show an old invasive infection. J Neurol Surg B Skull Base 80:S1–S244

    Article  Google Scholar 

  47. Furukawa S, Iwata M, Moriyoshi H, Suzuki J, Nishida S, Ito Y (2017) Primary central nervous system vasculitis (PCNSV) with recurrent amaurosis fugax. Rheumatology 56:iii97–iii100. https://doi.org/10.1093/rheumatology/kex111

    Article  Google Scholar 

  48. Obusez EC, Hui F, Hajj-ali RA, Cerejo R, Calabrese LH, Hammad T et al (2014) High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. Am J Neuroradiol 35:1527–1532. https://doi.org/10.3174/ajnr.A3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ohno K, Saito Y, Kurata H, Saiki Y, Ohtahara H, Yoshioka H et al (2016) Vessel wall enhancement in the diagnosis and management of primary angiitis of the central nervous system in children. Brain Dev 38:694–698. https://doi.org/10.1016/j.braindev.2016.01.006

    Article  PubMed  Google Scholar 

  50. Payne ET, Wei X-C, Kirton A (2011) Reversible Wall enhancement in pediatric cerebral arteriopathy. Can J Neurol Sci J Can Sci Neurol 38:139–140. https://doi.org/10.1017/S0317167100011197

    Article  Google Scholar 

  51. Pfefferkorn T, Linn J, Habs M, Opherk C, Cyran C, Ottomeyer C et al (2013) Black blood MRI in suspected large artery primary angiitis of the central nervous system. J Neuroimaging 23:379–383. https://doi.org/10.1111/j.1552-6569.2012.00743.x

    Article  PubMed  Google Scholar 

  52. Saam T, Habs M, Pollatos O, Cyran C, Pfefferkorn T, Dichgans M et al (2010) High-resolution black-blood contrast-enhanced T1 weighted images for the diagnosis and follow-up of intracranial arteritis. Br J Radiol 83:e182–e184. https://doi.org/10.1259/bjr/74101656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fukuma K, Kowa H, Nakayasu H, Nakashima K (2016) Atypical arteritis in internal carotid arteries: a novel concept of isolated internal carotid arteritis. Yonago Acta Med 59:248–254

    PubMed  PubMed Central  Google Scholar 

  54. Ito H, Yokoi S, Yokoyama K, Asai T, Uda K, Araki Y et al (2019) Progressive stenosis and radiological findings of vasculitis over the entire internal carotid artery in moyamoya vasculopathy associated with graves’ disease: a case report and review of the literature. BMC Neurol 19:34. https://doi.org/10.1186/s12883-019-1262-1

    Article  PubMed  PubMed Central  Google Scholar 

  55. Berkefeld J, Enzensberger W, Lanfermann H (2000) MRI in human immunodeficiency virus-associated cerebral vasculitis. Neuroradiology 42:526–528. https://doi.org/10.1007/s002340000328

    Article  CAS  PubMed  Google Scholar 

  56. Castro Caldas A, Geraldes R, Neto L, Canhao P, Melo TP (2013) Central nervous system vasculitis associated with hepatitis C virus infection: a brain MRI-supported diagnosis. J Neurol Sci 336:152–154. https://doi.org/10.1016/j.jns.2013.10.028

    Article  PubMed  Google Scholar 

  57. Cheng-Ching E, Jones S, Hui FK, Man S, Gilden D, Bhimraj A et al (2015) High-resolution MRI vessel wall imaging in varicella zoster virus vasculopathy. J Neurol Sci 351:168–173. https://doi.org/10.1016/j.jns.2015.02.017

    Article  PubMed  PubMed Central  Google Scholar 

  58. English SW, Carabenciov ID, Lehman VT, Petty GW, Scharf EL (2019) Zoster vasculopathy surveillance using intracranial vessel wall imaging. Neurol Clin Pract 9:462–464. https://doi.org/10.1212/CPJ.0000000000000626

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lebas A, Toulgoat F, Saliou G, Husson B, Tardieu M (2010) Stroke due to Lyme Neuroborreliosis: changes in vessel wall contrast enhancement. J Neuroimaging 22:210–212. https://doi.org/10.1111/j.1552-6569.2010.00550.x

    Article  PubMed  Google Scholar 

  60. Siakallis L, Yunus RE, Benjamin L, Sokolska M, Marcus J, Atkinson D et al (2018) Investigation of surrogate vascular wall and arterial lumen features for the diagnosis and subgroup differentiation of intracranial vasculopathies using MR-Vessel wall imaging protocols. Neuroradiology 60:S1

    Google Scholar 

  61. Song JW, Lehman L, Rivkin M, Gorman MP, Yang E (2019) Serial vessel wall MR imaging of pediatric tuberculous vasculitis. Neurol Clin Pract 9:459–461. https://doi.org/10.1212/CPJ.0000000000000623

    Article  PubMed  PubMed Central  Google Scholar 

  62. Abramo G, D’Angelo CA, Di Costa F (2018) The effect of multidisciplinary collaborations on research diversification. Scientometrics 116:423–433. https://doi.org/10.1007/s11192-018-2746-2

    Article  Google Scholar 

  63. Magaki S, Gardner T, Khanlou N, Yong WH, Salamon N, Vinters HV (2015) Brain biopsy in neurologic decline of unknown etiology. Hum Pathol 46:499–506. https://doi.org/10.1016/j.humpath.2014.12.003

    Article  PubMed  Google Scholar 

  64. Giannini C, Salvarani C, Hunder G, Brown RD (2012) Primary central nervous system vasculitis: pathology and mechanisms. Acta Neuropathol (Berl) 123:759–772. https://doi.org/10.1007/s00401-012-0973-9

    Article  Google Scholar 

  65. Beuker C, Schmidt A, Strunk D, Sporns PB, Wiendl H, Meuth SV et al (2018) Primary angiitis of the central nervous system: diagnosis and treatment. Ther Adv Neurol Disord 11:175628418785071. https://doi.org/10.1177/1756286418785071

    Article  Google Scholar 

  66. Hamaoka-Okamoto A, Suzuki C, Yahata T, Ikeda K, Nagi-Miura N, Ohno N et al (2014) The involvement of the vasa vasorum in the development of vasculitis in animal model of Kawasaki disease. Pediatr Rheumatol 12:12. https://doi.org/10.1186/1546-0096-12-12

    Article  Google Scholar 

  67. Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S et al (2001) Contribution of adventitial fibroblasts to neointima formation and vascular remodeling. Circ Res 89:1111–21. https://doi.org/10.1161/hh2401.100844

    Article  CAS  PubMed  Google Scholar 

  68. Portanova A, Hakakian N, Mikulis DJ, Virmani R, Abdalla WMA, Wasserman BA (2013) Intracranial vasa vasorum: insights and implications for imaging. Radiology 267:667–679. https://doi.org/10.1148/radiol.13112310

    Article  PubMed  Google Scholar 

  69. Abramo G, D’Angelo CA, Di Costa F (2017) Do interdisciplinary research teams deliver higher gains to science? Scientometrics 111:317–336. https://doi.org/10.1007/s11192-017-2253-x

    Article  Google Scholar 

  70. Wuchty S, Jones B, Uzzi B (2007) The increasing dominance of teams in production of knowledge. Science 316:1036–1039

    Article  CAS  Google Scholar 

  71. Abdel Razek AAK, Alvarez H, Bagg S, Refaat S, Castillo M (2014) Imaging spectrum of CNS vasculitis. Radiographics 34:873–894. https://doi.org/10.1148/rg.344135028

    Article  PubMed  Google Scholar 

  72. Song JW, Pavlou A, Xiao J, Kasner SE, Fan Z, Messé SR (2021) Vessel wall magnetic resonance imaging biomarkers of symptomatic intracranial atherosclerosis: a meta-analysis. Stroke 52:193–202. https://doi.org/10.1161/STROKEAHA.120.031480

    Article  CAS  PubMed  Google Scholar 

  73. Song JW, Moon BF, Burke MP, Kamesh Iyer S, Elliott MA, Shou H et al (2020) MR intracranial vessel wall imaging: a systematic review. J Neuroimaging 30:428–442. https://doi.org/10.1111/jon.12719

    Article  PubMed  PubMed Central  Google Scholar 

  74. Edjlali M, Qiao Y, Boulouis G, Menjot N, Saba L, Wasserman BA et al (2020) Vessel wall MR imaging for the detection of intracranial inflammatory vasculopathies. Cardiovascular Diagnosis and Therapy 10:1108–1119. https://doi.org/10.21037/cdt-20-324

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Emmanuel C. Obusez, MD, for sharing data and Briana Cervantes, BA, Ju Lu, PhD and Emi Takahashi, PhD, with help with foreign language translation.

Funding

This study was funded by the RSNA Research & Education Foundation (RSCH1929).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae W. Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent was required for this systematic review of the literature.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnett, N., Pavlou, A., Burke, M.P. et al. Vessel wall MR imaging of central nervous system vasculitis: a systematic review. Neuroradiology 64, 43–58 (2022). https://doi.org/10.1007/s00234-021-02724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-021-02724-9

Keywords

Navigation