Skip to main content
Log in

Structural MRI and tract-based spatial statistical analysis of diffusion tensor imaging in children with hemimegalencephaly

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the gross white matter abnormalities in the structural brain MR imaging as well as white matter microstructural alterations using tract-based spatial statistics (TBSS) analysis of diffusion tensor imaging (DTI) in both affected and contralateral cerebral hemispheres of children with hemimegalencephaly (HMEG).

Methods

From 2003 to 2019, we retrospectively reviewed brain MR images in 20 children (11 boys, 2 days–16.5 years) with HMEG, focusing on gross white matter abnormalities. DTI was evaluated in 12 patients (8 boys, 3 months–16.5 years) with HMEG and 12 age-, sex-, and magnetic field strength-matched control subjects. TBSS analysis was performed to analyze main white matter tracts. Regions of significant differences in fractional anisotropy (FA) were determined between HMEG and control subjects and between affected and contralateral hemispheres of HMEG.

Results

Gross white matter abnormalities were noted in both affected (n = 20, 100%) and contralateral hemisphere (n = 4, 20%) of HMEG. FA values were significantly decreased in both hemispheres of HMEG, compared with control subjects (P < 0.05). Contralateral hemispheres of HMEG showed regions with significantly decreased FA values compared with affected hemispheres (P < 0.05).

Conclusions

In addition to gross white matter abnormalities particularly evident in affected hemispheres, DTI analysis detected widespread microstructural alterations in both affected and contralateral hemispheres in HMEG suggesting HMEG may involve broader abnormalities in neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HMEG:

Hemimegalencephaly

DTI:

Diffusion tensor imaging

FA:

Fractional anisotropy

ROI:

Region-of-interest

TBSS:

Tract-based spatial statistics

MNI:

Montreal Neurological Institute

FSL:

FMRIB Software Library

mTOR:

Mammalian target of rapamycin

References

  1. Christensen J, Pedersen MG, Pedersen CB, Sidenius P, Olsen J, Vestergaard M (2009) Long-term risk of epilepsy after traumatic brain injury in children and young adults: a population-based cohort study. Lancet 373:1105–1110

    Article  Google Scholar 

  2. Fitz CR, Harwood-Nash DC, Boldt DW (1978) The radiographic features of unilateral megalencephaly. Neuroradiology 15:145–148

    Article  CAS  Google Scholar 

  3. Yagishita A, Arai N, Tamagawa K, Oda M (1998) Hemimegalencephaly: signal changes suggesting abnormal myelination on MRI. Neuroradiology 40:734–738

    Article  CAS  Google Scholar 

  4. Kato M, Mizuguchi M, Sakuta R, Takashima S (1996) Hypertrophy of the cerebral white matter in hemimegalencephaly. Pediatr Neurol 14:335–338

    Article  CAS  Google Scholar 

  5. Kamiya K, Sato N, Saito Y, Nakata Y, Ito K, Shigemoto Y, Ota M, Sasaki M, Ohtomo K (2014) Accelerated myelination along fiber tracts in patients with hemimegalencephaly. J Neuroradiol 41:202–210

    Article  Google Scholar 

  6. Uematsu M, Haginoya K, Togashi N, Hino-Fukuyo N, Nakayama T, Kikuchi A, Abe Y, Wakusawa K, Matsumoto Y, Kakisaka Y, Kobayashi T, Hirose M, Yokoyama H, Iinuma K, Iwasaki M, Nakasato N, Kaneta T, Akasaka M, Kamei A, Tsuchiya S (2010) Unique discrepancy between cerebral blood flow and glucose metabolism in hemimegalencephaly. Epilepsy Res 92:201–208

    Article  Google Scholar 

  7. Salamon N, Andres M, Chute DJ, Nguyen ST, Chang JW, Huynh MN, Chandra PS, Andre VM, Cepeda C, Levine MS, Leite JP, Neder L, Vinters HV, Mathern GW (2006) Contralateral hemimicrencephaly and clinical-pathological correlations in children with hemimegalencephaly. Brain 129:352–365

    Article  Google Scholar 

  8. Shiroishi MS, Jackson HA, Nelson MD Jr, Bluml S, Panigrahy A (2010) Contralateral hemimicrencephaly in neonatal hemimegalencephaly. Pediatr Radiol 40:1826–1830

    Article  Google Scholar 

  9. Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4:469–480

    Article  CAS  Google Scholar 

  10. Winston GP (2012) The physical and biological basis of quantitative parameters derived from diffusion MRI. Quant Imaging Med Surg 2:254–265

    PubMed  PubMed Central  Google Scholar 

  11. Sato N, Ota M, Yagishita A, Miki Y, Takahashi T, Adachi Y, Nakata Y, Sugai K, Sasaki M (2008) Aberrant midsagittal fiber tracts in patients with hemimegalencephaly. AJNR Am J Neuroradiol 29:823–827

    Article  CAS  Google Scholar 

  12. Takahashi T, Sato N, Ota M, Nakata Y, Yamashita F, Adachi Y, Saito Y, Sugai K, Sasaki M, Asada T (2009) Asymmetrical interhemispheric fiber tracts in patients with hemimegalencephaly on diffusion tensor magnetic resonance imaging. J Neuroradiol 36:249–254

    Article  CAS  Google Scholar 

  13. Oikawa T, Tatewaki Y, Murata T, Kato Y, Mugikura S, Takase K, Takahashi S (2015) Utility of diffusion tensor imaging parameters for diagnosis of hemimegalencephaly. Neuroradiol J 28:628–633

    Article  Google Scholar 

  14. Re TJ, Scarciolla L, Takahashi E, Specchio N, Bernardi B, Longo D (2015) Magnetic resonance fiber tracking in a neonate with hemimegalencephaly. J Neuroimaging 25:844–847

    Article  Google Scholar 

  15. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  Google Scholar 

  16. Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Huppi PS, Hertz-Pannier L (2014) The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276:48–71

    Article  CAS  Google Scholar 

  17. Flores-Sarnat L (2002) Hemimegalencephaly: part 1. Genetic, clinical, and imaging aspects. J Child Neurol 17:373–384 discussion 384

    Article  Google Scholar 

  18. Sato N, Yagishita A, Oba H, Miki Y, Nakata Y, Yamashita F, Nemoto K, Sugai K, Sasaki M (2007) Hemimegalencephaly: a study of abnormalities occurring outside the involved hemisphere. AJNR Am J Neuroradiol 28:678–682

    PubMed  CAS  Google Scholar 

  19. Takashima S, Chan F, Becker LE, Kuruta H (1991) Aberrant neuronal development in hemimegalencephaly: immunohistochemical and Golgi studies. Pediatr Neurol 7:275–280

    Article  CAS  Google Scholar 

  20. Sarnat H, Flores-Sarnat L, Crino P, Hader W, Bello-Espinosa L (2012) Hemimegalencephaly: foetal tauopathy with mTOR hyperactivation and neuronal lipidosis. Folia Neuropathol 50:330–345

    Article  Google Scholar 

  21. Soufflet C, Bulteau C, Delalande O, Pinton F, Jalin C, Plouin P, Bahi-Buisson N, Dulac O, Chiron C (2004) The nonmalformed hemisphere is secondarily impaired in young children with hemimegalencephaly: a pre- and postsurgery study with SPECT and EEG. Epilepsia 45:1375–1382

    Article  Google Scholar 

  22. Hanefeld F, Kruse B, Holzbach U, Christen HJ, Merboldt KD, Hanicke W, Frahm J (1995) Hemimegalencephaly: localized proton magnetic resonance spectroscopy in vivo. Epilepsia 36:1215–1224

    Article  CAS  Google Scholar 

  23. Rintahaka PJ, Chugani HT, Messa C, Phelps ME (1993) Hemimegalencephaly: evaluation with positron emission tomography. Pediatr Neurol 9:21–28

    Article  CAS  Google Scholar 

  24. Jahan R, Mischel PS, Curran JG, Peacock WJ, Shields DW, Vinters HV (1997) Bilateral neuropathologic changes in a child with hemimegalencephaly. Pediatr Neurol 17:344–349

    Article  CAS  Google Scholar 

  25. Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, Scott E, Bafna V, Hill KJ, Collazo A, Funari V, Russ C, Gabriel SB, Mathern GW, Gleeson JG (2012) De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44:941–945

    Article  CAS  Google Scholar 

  26. Pelorosso C, Watrin F, Conti V, Buhler E, Gelot A, Yang X, Mei D, McEvoy-Venneri J, Manent JB, Cetica V, Ball LL, Buccoliero AM, Vinck A, Barba C, Gleeson JG, Guerrini R, Represa A (2019) Somatic double-hit in MTOR and RPS6 in hemimegalencephaly with intractable epilepsy. Hum Mol Genet 28:3755–3765

    Article  CAS  Google Scholar 

  27. D’Gama AM, Geng Y, Couto JA, Martin B, Boyle EA, LaCoursiere CM, Hossain A, Hatem NE, Barry BJ, Kwiatkowski DJ, Vinters HV, Barkovich AJ, Shendure J, Mathern GW, Walsh CA, Poduri A (2015) Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann Neurol 77:720–725

    Article  CAS  Google Scholar 

  28. Enokizono M, Sato N, Ota M, Shigemoto Y, Morimoto E, Oba M, Sone D, Kimura Y, Sugai K, Sasaki M, Ikegaya N, Iwasaki M, Matsuda H (2019) Disrupted cortico-ponto-cerebellar pathway in patients with hemimegalencephaly. Brain and Development 41:507–515

    Article  Google Scholar 

  29. Salcman M, Defendini R, Correll J, Gilman S (1978) Neuropathological changes in cerebellar biopsies of epileptic patients. Ann Neurol 3:10–19

    Article  CAS  Google Scholar 

  30. Boer K, Troost D, Spliet WG, Redeker S, Crino PB, Aronica E (2007) A neuropathological study of two autopsy cases of syndromic hemimegalencephaly. Neuropathol Appl Neurobiol 33:455–470

    Article  CAS  Google Scholar 

  31. Ly MT, Nanavati TU, Frum CA, Pergami P (2015) Comparing tract-based spatial statistics and manual region-of-interest labeling as diffusion analysis methods to detect white matter abnormalities in infants with hypoxic-ischemic encephalopathy. J Magn Reson Imaging 42:1689–1697

    Article  Google Scholar 

  32. Huisman TA, Loenneker T, Barta G, Bellemann ME, Hennig J, Fischer JE, Il’yasov KA (2006) Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. Eur Radiol 16:1651–1658

    Article  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Yeon Jeon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. As this is a retrospective study, formal consent is not required.

Informed consent

The requirement for informed consent was waived due to retrospective nature of the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, T.Y., Poliakov, A.V., Friedman, S.D. et al. Structural MRI and tract-based spatial statistical analysis of diffusion tensor imaging in children with hemimegalencephaly. Neuroradiology 62, 1467–1474 (2020). https://doi.org/10.1007/s00234-020-02491-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02491-z

Keywords

Navigation