Skip to main content

Advertisement

Log in

Reducing task-based fMRI scanning time using simultaneous multislice echo planar imaging

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

A Correction to this article was published on 03 March 2018

This article has been updated

Abstract

Purpose

To maintain alertness and to remain motionless during scanning represent a substantial challenge for patients/subjects involved in both clinical and research functional magnetic resonance imaging (fMRI) examinations. Therefore, availability and application of new data acquisition protocols allowing the shortening of scan time without compromising the data quality and statistical power are of major importance.

Methods

Higher order category-selective visual cortical areas were identified individually, and rapid event-related fMRI design was used to compare three different sampling rates (TR = 2000, 1000, and 410 ms, using state-of-the-art simultaneous multislice imaging) and four different scanning lengths to match the statistical power of the traditional scanning methods to high sampling-rate design.

Results

The results revealed that ~ 4 min of the scan time with 1 Hz (TR = 1000 ms) sampling rate and ~ 2 min scanning at ~ 2.5 Hz (TR = 410 ms) sampling rate provide similar localization sensitivity and selectivity to that obtained with 11-min session at conventional, 0.5 Hz (TR = 2000 ms) sampling rate.

Conclusion

Our findings suggest that task-based fMRI examination of clinical population prone to distress such as presurgical mapping experiments might substantially benefit from the reduced (20–40%) scanning time that can be achieved by the application of simultaneous multislice sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 03 March 2018

    The original version of this article contained a mistake. The correct Affiliation 2 is Semmelweis University, János Szentágothai PhD School, MR Research Centre, Balassa Street 6, Budapest 1083, Hungary.

References

  1. Pillai JJ (2010) The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. Am J Neuroradiol 31(2):219–225. https://doi.org/10.3174/ajnr.A1845

    Article  CAS  PubMed  Google Scholar 

  2. Kesavadas C, Thomas B (2008) Clinical applications of functional MRI in epilepsy. Indian J Radiol Imaging 18(3):210–217. https://doi.org/10.4103/0971-3026.41829

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wengenroth M, Blatow M, Guenther J, Akbar M, Tronnier VM, Stippich C (2011) Diagnostic benefits of presurgical fMRI in patients with brain tumours in the primary sensorimotor cortex. Eur Radiol 21(7):1517–1525. https://doi.org/10.1007/s00330-011-2067-9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Peck KK, Bradbury M, Petrovich N, Hou BL, Ishill N, Brennan C, Tabar V, Holodny AI (2009) Presurgical evaluation of language using functional magnetic resonance imaging in brain tumor patients with previous surgery. Neurosurgery 64(4):644–653. https://doi.org/10.1227/01.NEU.0000339122.01957.0A

    Article  PubMed  Google Scholar 

  5. Vikingstad EM, Cao Y, Thomas AJ, Johnson AF, Malik GM, Welch KMA (2000) Language hemispheric dominance in patients with congenital lesions of eloquent brain. Neurosurgery 47(3):562–570. https://doi.org/10.1227/00006123-200009000-00004.

    CAS  PubMed  Google Scholar 

  6. Limotai C, Mirsattari SM (2012) Role of functional MRI in presurgical evaluation of memory function in temporal lobe epilepsy. Epilepsy Res Treat 2012:1–12. https://doi.org/10.1155/2012/687219

    Article  Google Scholar 

  7. Kahan J, Urner M, Moran R, Flandin G, Marreiros A, Mancini L, White M, Thornton J, Yousry T, Zrinzo L, Hariz M, Limousin P, Friston K, Foltynie T (2014) Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity. Brain 137(4):1130–1144. https://doi.org/10.1093/brain/awu027

    Article  PubMed  PubMed Central  Google Scholar 

  8. Farràs-Permanyer L, Guàrdia-Olmos J, Peró-Cebollero M (2015) Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art. Front Psychol 6. https://doi.org/10.3389/fpsyg.2015.01095

  9. Wood JM, Kundu B, Utter A, Gallagher TA, Voss J, Nair VA, Kuo JS, Field AS, Moritz CH, Meyerand ME, Prabhakaran V (2011) Impact of brain tumor location on morbidity and mortality: a retrospective functional MR imaging study. Am J Neuroradiol 32(8):1420–1425. https://doi.org/10.3174/ajnr.A2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kundu B, Penwarden A, Wood JM, Gallagher TA, Andreoli MJ, Voss J, Meier T, Nair VA, Kuo JS, Field AS, Moritz C, Meyerand ME, Prabhakaran V (2013) Association of functional magnetic resonance imaging indices with postoperative language outcomes in patients with primary brain tumors. Neurosurg Focus 34(4):E6. https://doi.org/10.3171/2013.2.FOCUS12413

    Article  PubMed  PubMed Central  Google Scholar 

  11. American Society of Functional Neuroradiology (2007) fMRI BOLD paradigms

  12. Zaca D, Jarso S, Pillai JJ (2013) Role of semantic paradigms for optimization of language mapping in clinical fMRI studies. Am J Neuroradiol 34(10):1966–1971. https://doi.org/10.3174/ajnr.A3628

    Article  CAS  PubMed  Google Scholar 

  13. Shi Y, Meindl T, Szameitat AJ, Müller HJ, Schubert T (2014) Task preparation and neural activation in stimulus-specific brain regions: an fMRI study with the cued task-switching paradigm. Brain Cogn 87:39–51. https://doi.org/10.1016/j.bandc.2014.03.001

    Article  PubMed  Google Scholar 

  14. Nadkarni TN, Andreoli MJ, Nair VA, Yin P, Young BM, Kundu B, Pankratz J, Radtke A, Holdsworth R, Kuo JS, Field AS, Baskaya MK, Moritz CH, Meyerand ME, Prabhakaran V (2015) Usage of fMRI for pre-surgical planning in brain tumor and vascular lesion patients: task and statistical threshold effects on language lateralization. NeuroImage Clin 7:415–423. https://doi.org/10.1016/j.nicl.2014.12.014

    Article  PubMed  Google Scholar 

  15. van der Zwaag W, Francis S, Bowtell R (2006) Improved echo volumar imaging (EVI) for functional MRI. Magn Reson Med 56(6):1320–1327. https://doi.org/10.1002/mrm.21080

    Article  PubMed  Google Scholar 

  16. Feinberg DA, Setsompop K (2013) Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson 229:90–100. https://doi.org/10.1016/j.jmr.2013.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nunes RG, Hajnal JV, Golay X, Larkman DJ. (2006) Simultaneous slice excitation and reconstruction for single shot EPI

  18. Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA (2016) Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 75(1):63–81. https://doi.org/10.1002/mrm.25897

    Article  PubMed  Google Scholar 

  19. Assländer J, Reisert M, Zahneisen B, Hugger T, Hennig J. (2012) MR-encephalography using a spherical stack of spirals trajectory

  20. Xu J, Moeller S, Auerbach EJ, Strupp J, Smith SM, Feinberg DA, Yacoub E, Uğurbil K (2013) Evaluation of slice accelerations using multiband echo planar imaging at 3T. NeuroImage 83:991–1001. https://doi.org/10.1016/j.neuroimage.2013.07.055

    Article  PubMed  Google Scholar 

  21. Chen L, T. Vu A, Xu J, Moeller S, Ugurbil K, Yacoub E, et al. (2015) Evaluation of highly accelerated simultaneous multi-slice EPI for fMRI. NeuroImage 104:452–459. doi:https://doi.org/10.1016/j.neuroimage.2014.10.027.

  22. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67(5):1210–1224. https://doi.org/10.1002/mrm.23097

    Article  PubMed  Google Scholar 

  23. Loenneker T, Hennel F, Hennig J (1996) Multislice interleaved excitation cycles (MUSIC): an efficient gradient-echo technique for functional MRI. Magn Reson Med 35(6):870–874. https://doi.org/10.1002/mrm.1910350613

    Article  CAS  PubMed  Google Scholar 

  24. Tong Y, Hocke LM, Frederick B deB. (2014) Short repetition time multiband echo-planar imaging with simultaneous pulse recording allows dynamic imaging of the cardiac pulsation signal: dynamic imaging of the cardiac pulsation signal. Magn Reson Med 72:1268–1276. doi:https://doi.org/10.1002/mrm.25041, 5.

  25. Eichner C, Jafari-Khouzani K, Cauley S, Bhat H, Polaskova P, Andronesi OC, Rapalino O, Turner R, Wald LL, Stufflebeam S, Setsompop K (2014) Slice accelerated gradient-echo spin-echo dynamic susceptibility contrast imaging with blipped CAIPI for increased slice coverage: slice accelerated GESE DSC. Magn Reson Med 72(3):770–778. https://doi.org/10.1002/mrm.24960

    Article  PubMed  Google Scholar 

  26. Schulz J, Boyacioğlu R, Norris DG (2016) Multiband multislab 3D time-of-flight magnetic resonance angiography for reduced acquisition time and improved sensitivity: multiband multislab 3D TOF-MRA. Magn Reson Med 75(4):1662–1668. https://doi.org/10.1002/mrm.25774

    Article  PubMed  Google Scholar 

  27. Todd N, Moeller S, Auerbach EJ, Yacoub E, Flandin G, Weiskopf N (2016) Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3T: sensitivity and slice leakage artifacts. NeuroImage 124:32–42. https://doi.org/10.1016/j.neuroimage.2015.08.056.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lutti A, Thomas DL, Hutton C, Weiskopf N (2013) High-resolution functional MRI at 3 T: 3D/2D echo-planar imaging with optimized physiological noise correction: high-resolution fMRI at 3T. Magn Reson Med 69(6):1657–1664. https://doi.org/10.1002/mrm.24398

    Article  PubMed  Google Scholar 

  29. Cauley SF, Polimeni JR, Bhat H, Wald LL, Setsompop K (2014) Interslice leakage artifact reduction technique for simultaneous multislice acquisitions: interslice leakage artifact reduction technique. Magn Reson Med 72(1):93–102. https://doi.org/10.1002/mrm.24898

    Article  PubMed  Google Scholar 

  30. Brainard D (1997) The psychophysics toolbox. Spat Vis 10(4):433–436. https://doi.org/10.1163/156856897X00357

    Article  CAS  PubMed  Google Scholar 

  31. Psychtoolbox-3 n.d. http://psychtoolbox.org/.

  32. Hermann P, Grotheer M, Kovács G, Vidnyánszky Z (2017) The relationship between repetition suppression and face perception. Brain Imaging Behav 11(4):1018–1028. https://doi.org/10.1007/s11682-016-9575-9

    Article  PubMed  Google Scholar 

  33. Kanwisher N, Yovel G (2006) The fusiform face area: a cortical region specialized for the perception of faces. Philos Trans R Soc B Biol Sci 361(1476):2109–2128. https://doi.org/10.1098/rstb.2006.1934

    Article  Google Scholar 

  34. Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598–601. https://doi.org/10.1038/33402.

    Article  CAS  PubMed  Google Scholar 

  35. Downing PE (2001) A cortical area selective for visual processing of the human body. Science 293(5539):2470–2473. https://doi.org/10.1126/science.1063414

    Article  CAS  PubMed  Google Scholar 

  36. Meszlényi RJ, Hermann P, Buza K, Gál V, Vidnyánszky Z (2017) Resting state fMRI functional connectivity analysis using dynamic time warping. Front Neurosci 11. https://doi.org/10.3389/fnins.2017.00075

  37. Sahib AK, Mathiak K, Erb M, Elshahabi A, Klamer S, Scheffler K, Focke NK, Ethofer T (2016) Effect of temporal resolution and serial autocorrelations in event-related functional MRI: temporal resolution and autocorrelations in fMRI. Magn Reson Med 76(6):1805–1813. https://doi.org/10.1002/mrm.26073

    Article  PubMed  Google Scholar 

  38. Keil B, Blau JN, Biber S, Hoecht P, Tountcheva V, Setsompop K, Triantafyllou C, Wald LL (2013) A 64-channel 3T array coil for accelerated brain MRI. Magn Reson Med 70(1):248–258. https://doi.org/10.1002/mrm.24427

    Article  PubMed  Google Scholar 

  39. Polimeni JR, Bhat H, Witzel T, Benner T, Feiweier T, Inati SJ, Renvall V, Heberlein K, Wald LL (2016) Reducing sensitivity losses due to respiration and motion in accelerated echo planar imaging by reordering the autocalibration data acquisition: reducing losses in accelerated EPI with FLEET-ACS. Magn Reson Med 75(2):665–679. https://doi.org/10.1002/mrm.25628

    Article  PubMed  Google Scholar 

  40. Koshino H, Minamoto T, Yaoi K, Osaka M, Osaka N (2015) Coactivation of the default mode network regions and working memory network regions during task preparation. Sci Rep 4(1). https://doi.org/10.1038/srep05954

  41. DeSalvo MN, Douw L, Takaya S, Liu H, Stufflebeam SM (2014) Task-dependent reorganization of functional connectivity networks during visual semantic decision making. Brain Behav 4(6):877–885. https://doi.org/10.1002/brb3.286

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank you Ádám Kettinger and Regina Meszlényi for help, advice, and ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Máté Kiss.

Ethics declarations

Funding

MK, PH, ZV, and VG were funded by a grant from the Hungarian Brain Research Program (KTIA_13_NAP-A-I/18).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s00234-018-2001-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiss, M., Hermann, P., Vidnyánszky, Z. et al. Reducing task-based fMRI scanning time using simultaneous multislice echo planar imaging. Neuroradiology 60, 293–302 (2018). https://doi.org/10.1007/s00234-017-1962-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-017-1962-4

Keywords

Navigation