Skip to main content
Log in

Lesion location associated with balance recovery and gait velocity change after rehabilitation in stroke patients

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Impaired gait function after stroke contributes strongly to overall patient disability. However, the response to rehabilitation varies between individuals. The aims of this study were to identify predictors of gait velocity change and to elucidate lesion location associated with change of balance and gait function.

Methods

We reviewed 102 stroke patients. The patients were divided into two groups according to gait ability post-rehabilitation, and we analyzed differences in their characteristics, such as demographic information, lesion factors, and initial balance function. Multivariate regression analyses were performed to examine the predictors of rehabilitation response. Lesion location and volume were measured on brain magnetic resonance images. We generated statistical maps of the lesions related to functional gains in gait and balance using voxel-based lesion symptom mapping (VLSM).

Results

The group of patients who regained independent ambulation function showed a smaller lesion size, a shorter duration from stroke onset, and higher initial balance function. In the regression model, gait velocity changes were predicted with the initial Berg balance scale (BBS) and duration post-onset. Absolute BBS changes were also correlated with the duration post-onset and initial BBS, and relative BBS changes were predicted by the baseline BBS. Using VLSM, lesion locations associated with gait velocity changes and balance adjusting for other factors were the insula, internal capsule, and adjacent white matter.

Conclusion

Initial balance function as well as the interval between stroke onset and the initiation of therapy might influence balance recovery and gait velocity changes. Damage to the insula and internal capsule also affected gait velocity change after rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS (1995) Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 76(1):27–32

    Article  CAS  PubMed  Google Scholar 

  2. Keenan MA, Perry J, Jordan C (1984) Factors affecting balance and ambulation following stroke. Clin Orthop Relat Res 182:165–171

    Google Scholar 

  3. Mayo NE, Korner-Bitensky NA, Becker R (1991) Recovery time of independent function post-stroke. Am J Phys Med Rehabil 70(1):5–12

    Article  CAS  PubMed  Google Scholar 

  4. Burke E, Dobkin BH, Noser EA, Enney LA, Cramer SC (2014) Predictors and biomarkers of treatment gains in a clinical stroke trial targeting the lower extremity. Stroke 45(8):2379–2384. doi:10.1161/STROKEAHA.114.005436

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cramer SC, Parrish TB, Levy RM, Stebbins GT, Ruland SD, Lowry DW, Trouard TP, Squire SW, Weinand ME, Savage CR, Wilkinson SB, Juranek J, Leu SY, Himes DM (2007) Predicting functional gains in a stroke trial. Stroke 38(7):2108–2114. doi:10.1161/STROKEAHA.107.485631

    Article  PubMed  Google Scholar 

  6. Dobkin BH, Nadeau SE, Behrman AL, Wu SS, Rose DK, Bowden M, Studenski S, Lu X, Duncan PW (2014) Prediction of responders for outcome measures of locomotor experience applied post stroke trial. J Rehabil Res Dev 51(1):39–50. doi:10.1682/JRRD.2013.04.0080

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lindenberg R, Zhu LL, Ruber T, Schlaug G (2012) Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum Brain Mapp 33(5):1040–1051. doi:10.1002/hbm.21266

    Article  PubMed  Google Scholar 

  8. O'Shea J, Boudrias MH, Stagg CJ, Bachtiar V, Kischka U, Blicher JU, Johansen-Berg H (2014) Predicting behavioural response to TDCS in chronic motor stroke. NeuroImage 85(Pt 3):924–933. doi:10.1016/j.neuroimage.2013.05.096

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lam JM, Globas C, Cerny J, Hertler B, Uludag K, Forrester LW, Macko RF, Hanley DF, Becker C, Luft AR (2010) Predictors of response to treadmill exercise in stroke survivors. Neurorehabil Neural Repair 24(6):567–574. doi:10.1177/1545968310364059

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130(Pt 1):170–180. doi:10.1093/brain/awl333

    PubMed  Google Scholar 

  11. Kollen B, van de Port I, Lindeman E, Twisk J, Kwakkel G (2005) Predicting improvement in gait after stroke: a longitudinal prospective study. Stroke 36(12):2676–2680. doi:10.1161/01.STR.0000190839.29234.50

    Article  PubMed  Google Scholar 

  12. Riley JD, Le V, Der-Yeghiaian L, See J, Newton JM, Ward NS, Cramer SC (2011) Anatomy of stroke injury predicts gains from therapy. Stroke 42(2):421–426. doi:10.1161/STROKEAHA.110.599340

    Article  PubMed  Google Scholar 

  13. Luft AR, Forrester L, Macko RF, McCombe-Waller S, Whitall J, Villagra F, Hanley DF (2005) Brain activation of lower extremity movement in chronically impaired stroke survivors. NeuroImage 26(1):184–194. doi:10.1016/j.neuroimage.2005.01.027

    Article  PubMed  Google Scholar 

  14. Chen CL, Tang FT, Chen HC, Chung CY, Wong MK (2000) Brain lesion size and location: effects on motor recovery and functional outcome in stroke patients. Arch Phys Med Rehabil 81(4):447–452. doi:10.1053/mr.2000.3837

    Article  CAS  PubMed  Google Scholar 

  15. Pan SL, Wu SC, Wu TH, Lee TK, Chen TH (2006) Location and size of infarct on functional outcome of noncardioembolic ischemic stroke. Disabil Rehabil 28(16):977–983. doi:10.1080/09638280500404438

    Article  PubMed  Google Scholar 

  16. Saunders DE, Clifton AG, Brown MM (1995) Measurement of infarct size using MRI predicts prognosis in middle cerebral artery infarction. Stroke 26(12):2272–2276

    Article  CAS  PubMed  Google Scholar 

  17. Alexander LD, Black SE, Patterson KK, Gao F, Danells CJ, McIlroy WE (2009) Association between gait asymmetry and brain lesion location in stroke patients. Stroke 40(2):537–544. doi:10.1161/STROKEAHA.108.527374

    Article  PubMed  Google Scholar 

  18. Kim EH, Lee J, Jang SH (2013) Motor outcome prediction using diffusion tensor tractography of the corticospinal tract in large middle cerebral artery territory infarct. NeuroRehabilitation 32(3):583–590. doi:10.3233/NRE-130880

    PubMed  Google Scholar 

  19. Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6(5):448–450. doi:10.1038/nn1050

    CAS  PubMed  Google Scholar 

  20. Moon HI, Pyun SB, Tae WS, Kwon HK (2016) Neural substrates of lower extremity motor, balance, and gait function after supratentorial stroke using voxel-based lesion symptom mapping. Neuroradiology 58(7):723–731. doi:10.1007/s00234-016-1672-3

    Article  PubMed  Google Scholar 

  21. Kim TH, Jhoo JH, Park JH, Kim JL, Ryu SH, Moon SW, Choo IH, Lee DW, Yoon JC, Do YJ, Lee SB, Kim MD, Kim KW (2010) Korean version of mini mental status examination for dementia screening and its short form. Psychiatry Investig 7(2):102–108. doi:10.4306/pi.2010.7.2.102

    Article  PubMed  PubMed Central  Google Scholar 

  22. Berg KO, Maki BE, Williams JI, Holliday PJ, Wood-Dauphinee SL (1992) Clinical and laboratory measures of postural balance in an elderly population. Arch Phys Med Rehabil 73(11):1073–1080

    CAS  PubMed  Google Scholar 

  23. Friedman PJ (1990) Gait recovery after hemiplegic stroke. Int Disabil Stud 12(3):119–122

    Article  CAS  PubMed  Google Scholar 

  24. Holden MK, Gill KM, Magliozzi MR, Nathan J, Piehl-Baker L (1984) Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys Ther 64(1):35–40

    Article  CAS  PubMed  Google Scholar 

  25. Wade DT, Hewer RL (1987) Functional abilities after stroke: measurement, natural history and prognosis. J Neurol Neurosurg Psychiatry 50(2):177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kollen B, Kwakkel G, Lindeman E (2006) Longitudinal robustness of variables predicting independent gait following severe middle cerebral artery stroke: a prospective cohort study. Clin Rehabil 20(3):262–268

    Article  PubMed  Google Scholar 

  27. Prabhakaran S, Zarahn E, Riley C, Speizer A, Chong JY, Lazar RM, Marshall RS, Krakauer JW (2008) Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair 22(1):64–71. doi:10.1177/1545968307305302

    Article  PubMed  Google Scholar 

  28. Franchignoni FP, Tesio L, Ricupero C, Martino MT (1997) Trunk control test as an early predictor of stroke rehabilitation outcome. Stroke 28(7):1382–1385

    Article  CAS  PubMed  Google Scholar 

  29. Lo R, Gitelman D, Levy R, Hulvershorn J, Parrish T (2010) Identification of critical areas for motor function recovery in chronic stroke subjects using voxel-based lesion symptom mapping. NeuroImage 49(1):9–18. doi:10.1016/j.neuroimage.2009.08.044

    Article  PubMed  Google Scholar 

  30. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7(1):13–31

    CAS  PubMed  Google Scholar 

  31. Corriveau H, Hebert R, Raiche M, Dubois MF, Prince F (2004) Postural stability in the elderly: empirical confirmation of a theoretical model. Arch Gerontol Geriatr 39(2):163–177. doi:10.1016/j.archger.2004.03.001

    Article  PubMed  Google Scholar 

  32. Hayes SH, Carroll SR (1986) Early intervention care in the acute stroke patient. Arch Phys Med Rehabil 67(5):319–321

    CAS  PubMed  Google Scholar 

  33. Paolucci S, Antonucci G, Grasso MG, Morelli D, Troisi E, Coiro P, Bragoni M (2000) Early versus delayed inpatient stroke rehabilitation: a matched comparison conducted in Italy. Arch Phys Med Rehabil 81(6):695–700

    Article  CAS  PubMed  Google Scholar 

  34. Musicco M, Emberti L, Nappi G, Caltagirone C, Italian Multicenter Study on Outcomes of Rehabilitation of Neurological P (2003) Early and long-term outcome of rehabilitation in stroke patients: the role of patient characteristics, time of initiation, and duration of interventions. Arch Phys Med Rehabil 84(4):551–558. doi:10.1053/apmr.2003.50084

    Article  Google Scholar 

  35. Jones PS, Pomeroy VM, Wang J, Schlaug G, Tulasi Marrapu S, Geva S, Rowe PJ, Chandler E, Kerr A, Baron JC, investigators SW-C (2016) Does stroke location predict walk speed response to gait rehabilitation? Hum Brain Mapp 37(2):689-703. doi:10.1002/hbm.23059

  36. Chen C, Leys D, Esquenazi A (2013) The interaction between neuropsychological and motor deficits in patients after stroke. Neurology 80(3 Suppl 2):S27–S34. doi:10.1212/WNL.0b013e3182762569

    Article  PubMed  Google Scholar 

  37. Meyer MJ, Pereira S, McClure A, Teasell R, Thind A, Koval J, Richardson M, Speechley M (2015) A systematic review of studies reporting multivariable models to predict functional outcomes after post-stroke inpatient rehabilitation. Disabil Rehabil 37(15):1316–1323. doi:10.3109/09638288.2014.963706

    Article  PubMed  Google Scholar 

  38. van Bragt PJ, van Ginneken BT, Westendorp T, Heijenbrok-Kal MH, Wijffels MP, Ribbers GM (2014) Predicting outcome in a postacute stroke rehabilitation programme. Int J Rehabil Res 37(2):110–117. doi:10.1097/MRR.0000000000000041

    Article  PubMed  Google Scholar 

  39. Brown AW, Therneau TM, Schultz BA, Niewczyk PM, Granger CV (2015) Measure of functional independence dominates discharge outcome prediction after inpatient rehabilitation for stroke. Stroke 46(4):1038–1044. doi:10.1161/STROKEAHA.114.007392

    Article  PubMed  Google Scholar 

  40. McClure JA, Salter K, Meyer M, Foley N, Kruger H, Teasell R (2011) Predicting length of stay in patients admitted to stroke rehabilitation with high levels of functional independence. Disabil Rehabil 33(23–24):2356–2361. doi:10.3109/09638288.2011.572225

    Article  PubMed  Google Scholar 

  41. Kim JS (2016) Post-stroke mood and emotional disturbances: pharmacological therapy based on mechanisms. J Stroke 18(3):244–255. doi:10.5853/jos.2016.01144

    Article  PubMed  PubMed Central  Google Scholar 

  42. Johansson BB (2011) Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurol Scand 123(3):147–159. doi:10.1111/j.1600-0404.2010.01417.x

    Article  CAS  PubMed  Google Scholar 

  43. Feigenson JS, McDowell FH, Meese P, McCarthy ML, Greenberg SD (1977) Factors influencing outcome and length of stay in a stroke rehabilitation unit. Part 1. Analysis of 248 unscreened patients—medical and functional prognostic indicators. Stroke 8(6):651–656

    Article  CAS  PubMed  Google Scholar 

  44. Starr JM, Leaper SA, Murray AD, Lemmon HA, Staff RT, Deary IJ, Whalley LJ (2003) Brain white matter lesions detected by magnetic resonance [correction of resosnance] imaging are associated with balance and gait speed. J Neurol Neurosurg Psychiatry 74(1):94–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Laufer Y, Sivan D, Schwarzmann R, Sprecher E (2003) Standing balance and functional recovery of patients with right and left hemiparesis in the early stages of rehabilitation. Neurorehabil Neural Repair 17(4):207–213. doi:10.1177/0888439003259169

    Article  PubMed  Google Scholar 

  46. Chen IC, Cheng PT, Hu AL, Liaw MY, Chen LR, Hong WH, Wong MK (2000) Balance evaluation in hemiplegic stroke patients. Chang Gung Med J 23(6):339–347

    CAS  PubMed  Google Scholar 

  47. Cheng B, Forkert ND, Zavaglia M, Hilgetag CC, Golsari A, Siemonsen S, Fiehler J, Pedraza S, Puig J, Cho TH, Alawneh J, Baron JC, Ostergaard L, Gerloff C, Thomalla G (2014) Influence of stroke infarct location on functional outcome measured by the modified Rankin scale. Stroke 45(6):1695–1702. doi:10.1161/STROKEAHA.114.005152

    Article  CAS  PubMed  Google Scholar 

  48. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5–6):655–667. doi:10.1007/s00429-010-0262-0

    Article  PubMed  PubMed Central  Google Scholar 

  49. Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22(3):229–244

    Article  CAS  PubMed  Google Scholar 

  50. Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13(4):500–505

    Article  CAS  PubMed  Google Scholar 

  51. Calautti C, Baron JC (2003) Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 34(6):1553–1566. doi:10.1161/01.STR.0000071761.36075.A6

    Article  PubMed  Google Scholar 

  52. Cramer SC (2008) Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol 63(3):272–287. doi:10.1002/ana.21393

    Article  PubMed  Google Scholar 

  53. Sharma N, Baron JC, Rowe JB (2009) Motor imagery after stroke: relating outcome to motor network connectivity. Ann Neurol 66(5):604–616. doi:10.1002/ana.21810

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim BR, Moon WJ, Kim H, Jung E, Lee J (2016) Transcranial magnetic stimulation and diffusion tensor tractography for evaluating ambulation after stroke. J Stroke 18(2):220–226. doi:10.5853/jos.2015.01767

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Im Moon.

Ethics declarations

Funding

No funding was received for this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (IRB No.: RM17-01) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, H.I., Lee, H.J. & Yoon, S.Y. Lesion location associated with balance recovery and gait velocity change after rehabilitation in stroke patients. Neuroradiology 59, 609–618 (2017). https://doi.org/10.1007/s00234-017-1840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-017-1840-0

Keywords

Navigation