Skip to main content
Log in

Whole-brain CT digital subtraction angiography of cerebral dural arteriovenous fistula using 320-detector row CT

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The purpose of this study was to evaluate the usefulness of CT digital subtraction angiography (CTDSA) by using 320-detector row CT in the diagnosis and classification of cerebral dural arteriovenous fistula (dAVF) and comparing it with DSA as the standard reference.

Methods

A total of 29 CTDSA/DSA from 25 patients with dAVF were retrospectively evaluated by two neuroradiologists. The presence, Cognard classification, and feeding arteries of dAVFs on CTDSA were assessed according to DSA.

Results

DSA depicted 33 dAVFs in 28 cases. By consensus reading, CTDSA correctly detected 32 dAVFs in 27 cases and properly graded 31 lesions. The intermodality agreement for the presence and classification of dAVFs was excellent (kappa = 0.955 and 0.921, respectively). CTDSA detected 77 of 109 feeding arteries (70.6 %) in 25 cases. The intermodality agreement for the feeding arteries was good (kappa = 0.713).

Conclusion

Although CTDSA is limited in temporal and spatial resolution in comparison with DSA, it is an effective non-invasive tool for the detection and classification of dAVF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cognard C, Gobin YP, Pierot L, Bailly AL, Houdart E, Casasco A, Chiras J, Merland JJ (1995) Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology 194:671–680

    PubMed  CAS  Google Scholar 

  2. Borden JA, Wu JK, Shucart WA (1995) A proposed classification for spinal and cranial dural arteriovenous fistulous malformations and implications for treatment. J Neurosurg 82:166–179

    Article  PubMed  CAS  Google Scholar 

  3. van Rooij WJ, Sluzewski M, Beute GN (2007) Dural arteriovenous fistulas with cortical venous drainage: incidence, clinical presentation, and treatment. AJNR Am J Neuroradiol 28(4):651–655

    PubMed  Google Scholar 

  4. Kaufmann TJ, Huston J, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF (2007) Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology 243:812–819

    Article  PubMed  Google Scholar 

  5. Willinsky RA, Taylor SM, TerBrugge K, Farb RI, Tomlinson G, Montanera W (2003) Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology 227:522–528

    Article  PubMed  Google Scholar 

  6. Pekkola J, Kangasniemi M (2011) Posterior fossa dural arteriovenous fistulas: diagnosis and follow-up with time-resolved imaging of contrast kinetics (TRICKS) at 1.5 T. Acta Radiol 52:442–447

    Article  PubMed  Google Scholar 

  7. Meckel S, Maier M, Ruiz DSM, Yilmaz H, Scheffler K, Radue E-W, Wetzel SG (2007) MR angiography of dural arteriovenous fistulas: diagnosis and follow-up after treatment using a time-resolved 3D contrast-enhanced technique. AJNR Am J Neuroradiol 28:877–884

    PubMed  CAS  Google Scholar 

  8. Uchino A, Nomiyama K, Takase Y, Nakazono T, Tominaga Y, Imaizumi T, Kudo S (2007) Retrograde flow in the dural sinuses detected by three-dimensional time-of-flight MR angiography. Neuroradiology 49:211–215

    Article  PubMed  Google Scholar 

  9. Siebert E, Bohner G, Dewey M, Masuhr F, Hoffmann KT, Mews J, Engelken F, Bauknecht HC, Diekmann S, Klingebiel R (2009) 320-slice CT neuroimaging: initial clinical experience and image quality evaluation. Br J Radiol 82:561–570

    Article  PubMed  CAS  Google Scholar 

  10. Klingebiel R, Siebert E, Diekmann S, Wiener E, Masuhr F, Wagner M, Bauknecht H-C, Dewey M, Bohner G (2009) 4-D imaging in cerebrovascular disorders by using 320-slice CT: feasibility and preliminary clinical experience. Acad Radiol 16:123–129

    Article  PubMed  Google Scholar 

  11. Soga S, Ersoy H, Mitsouras D, Schultz K, Whitmore AG, Powers SL, Steigner ML, Signorelli J, Prior RF, Rybicki FJ, Pomahac B (2010) Surgical planning for composite tissue allotransplantation of the face using 320-detector row computed tomography. J Comput Assist Tomogr 34:766–769

    Article  PubMed  Google Scholar 

  12. Willems PWA, Taeshineetanakul P, Schenk B, Brouwer PA, Terbrugge KG, Krings T (2012) The use of 4D-CTA in the diagnostic work-up of brain arteriovenous malformations. Neuroradiology 54:123–131

    Article  PubMed  Google Scholar 

  13. Manninen A-L, Isokangas J-M, Karttunen A, Siniluoto T, Nieminen MT (2012) A comparison of radiation exposure between diagnostic CTA and DSA examinations of cerebral and cervicocerebral vessels. AJNR Am J Neuroradiol 33:2038–2042

    Article  PubMed  Google Scholar 

  14. Willems PWA, Brouwer PA, Barfett JJ, TerBrugge KG, Krings T (2011) Detection and classification of cranial dural arteriovenous fistulas using 4D-CT angiography: initial experience. AJNR Am J Neuroradiol 32:49–53

    PubMed  CAS  Google Scholar 

  15. Brouwer PA, Bosman T, van Walderveen MAA, Krings T, Leroux AA, Willems PWA (2010) Dynamic 320-section CT angiography in cranial arteriovenous shunting lesions. AJNR Am J Neuroradiol 31:767–770

    Article  PubMed  CAS  Google Scholar 

  16. Beijer TR, van Dijk EJ, de Vries J, Vermeer SE, Prokop M, Meijer FJA (2013) 4D-CT angiography differentiating arteriovenous fistula subtypes. Clin Neurol Neurosurg. doi:10.1016/j.clineuro.2012.12.015

    PubMed  Google Scholar 

  17. Imai F, Ogura Y, Kiya N, Zhou J, Ninomiya T, Katada K, Sano H, Kanno T (1996) Synthesized surface anatomy scanning (SSAS) for surgical planning of brain metastasis at the sensorimotor region: initial experience with 5 patients. Acta Neurochir (Wien) 138:290–293

    Article  CAS  Google Scholar 

  18. Tsuchiya K, Katase S, Yoshino A, Hachiya J, Shiokawa Y (2002) MR-angiogram-added surface anatomy scanning of superficial cerebral arteriovenous malformations. Eur Radiol 12:2330–2334

    Article  PubMed  Google Scholar 

  19. Nishimura S, Hirai T, Sasao A, Kitajima M, Morioka M, Kai Y, Omori Y, Okuda T, Murakami R, Fukuoka H, Awai K, Kuratsu J-I, Yamashita Y (2010) Evaluation of dural arteriovenous fistulas with 4D contrast-enhanced MR angiography at 3 T. AJNR Am J Neuroradiol 31:80–85

    Article  PubMed  CAS  Google Scholar 

  20. Hori M, Aoki S, Oishi H, Nakanishi A, Shimoji K, Kamagata K, Houshito H, Kuwatsuru R, Arai H (2011) Utility of time-resolved three-dimensional magnetic resonance digital subtraction angiography without contrast material for assessment of intracranial dural arterio-venous fistula. Acta Radiol 52:808–812

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Fujiwara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, H., Momoshima, S., Akiyama, T. et al. Whole-brain CT digital subtraction angiography of cerebral dural arteriovenous fistula using 320-detector row CT. Neuroradiology 55, 837–843 (2013). https://doi.org/10.1007/s00234-013-1181-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-013-1181-6

Keywords

Navigation