Skip to main content

Advertisement

Log in

Measurements of diagnostic examination performance and correlation analysis using microvascular leakage, cerebral blood volume, and blood flow derived from 3T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in glial tumor grading

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

To assess the diagnostic accuracy of microvascular leakage (MVL), cerebral blood volume (CBV) and blood flow (CBF) values derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MR imaging) for grading of cerebral glial tumors, and to estimate the correlation between vascular permeability/perfusion parameters and tumor grades.

Methods

A prospective study of 79 patients with cerebral glial tumors underwent DSC-MR imaging. Normalized relative CBV (rCBV) and relative CBF (rCBF) from tumoral (rCBVt and rCBFt), peri-enhancing region (rCBVe and rCBFe), and the value in the tumor divided by the value in the peri-enhancing region (rCBVt/e and rCBFt/e), as well as MVL, expressed as the leakage coefficient K 2 were calculated. Hemodynamic variables and tumor grades were analyzed statistically and with Pearson correlations. Receiver operating characteristic (ROC) curve analyses were also performed for each of the variables.

Results

The differences in rCBVt and the maximum MVL (MVLmax) values were statistically significant among all tumor grades. Correlation analysis using Pearson was as follows: rCBVt and tumor grade, r = 0.774; rCBFt and tumor grade, r = 0.417; MVLmax and tumor grade, r = 0.559; MVLmax and rCBVt, r = 0.440; MVLmax and rCBFt, r = 0.192; and rCBVt and rCBFt, r = 0.605. According to ROC analyses for distinguishing tumor grade, rCBVt showed the largest areas under ROC curve (AUC), except for grade III from IV.

Conclusion

Both rCBVt and MVLmax showed good discriminative power in distinguishing all tumor grades. rCBVt correlated strongly with tumor grade; the correlation between MVLmax and tumor grade was moderate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Eng J Med 359:492–507

    Article  CAS  Google Scholar 

  2. Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H (2005) Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg 107:174–180

    Article  PubMed  Google Scholar 

  3. Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Konohara Y, Ushio Y, Takahashi M (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60

    Article  PubMed  CAS  Google Scholar 

  4. Zonari P, Baraldi P, Crisi G (2007) Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology 49:795–803

    Article  PubMed  Google Scholar 

  5. Goebell E, Paustenbach S, Vaeterlein O, Ding XQ, Heese O, Fiehler J, Kucinski T, Hagel C, Westphal M, Zeumer H (2006) Low-grade and anaplastic gliomas: differences in architecture evaluated with diffusion-tensor MR imaging. Radiology 239:217–222

    Article  PubMed  Google Scholar 

  6. Chang SM, Prados MD (1995) Chemotherapy for gliomas. Curr Opin Oncol 7:207–213

    Article  PubMed  CAS  Google Scholar 

  7. Krauseneck P, Müller B (1994) Chemotherapy of malignant gliomas. Recent Results Cancer Res 135:135–147

    PubMed  CAS  Google Scholar 

  8. Bulnes S, Bilbao J, Lafuente JV (2009) Microvascular adaptive changes in experimental endogenous brain gliomas. Histol Histopathol 24:693–706

    PubMed  CAS  Google Scholar 

  9. Bullitt E, Reardon DA, Smith JK (2007) A review of micro- and macrovascular analyses in the assessment of tumor-associated vasculature as visualized by MR. Neuroimage 37(Suppl 1):S116–S119

    Article  PubMed  Google Scholar 

  10. Covarrubias DJ, Rosen BR, Lev MH (2004) Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 9:528–537

    Article  PubMed  Google Scholar 

  11. Provenzale JM, Wang GR, Brenner T et al (2002) Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 178:711–716

    PubMed  Google Scholar 

  12. Roberts HC, Roberts TPL, Brasch RC, Dillon WP (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 21:891–899

    PubMed  CAS  Google Scholar 

  13. Aronen HJ, Perkio J (2002) Dynamic susceptibility contrast MRI of gliomas. Neuroimag Clin N Am 12:501–523

    Article  Google Scholar 

  14. Jackson A, Kassner A, Annesley-Williams D, Reid H, Zhu XP, Li KL (2002) Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. AJNR Am J Neuroradiol 23:7–14

    PubMed  Google Scholar 

  15. Louis DN, Ohgaki H, Wiestler OD, Carenee WK (eds) (2007) WHO Classification of tumors of the central nervous system. IARC, Lyon

    Google Scholar 

  16. Chernov MF, Kubo O, Hayashi M, Izawa M, Maruyama T, Usukura M, Ono Y, Hori T, Takakura K (2005) Proton MRS of the peritumoral brain. J Neurol Sci 228:137–142

    Article  PubMed  CAS  Google Scholar 

  17. Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  PubMed  CAS  Google Scholar 

  18. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725

    Article  PubMed  CAS  Google Scholar 

  19. Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867

    PubMed  CAS  Google Scholar 

  20. Emblem KE, Due-Tonnessen P, Hald JK, Bjornerud A (2009) Automatic vessel removal in gliomas from dynamic susceptibility contrast imaging. Magn Reson Med 61:1210–1217

    Article  PubMed  Google Scholar 

  21. Wetzel SG, Cha S, Johnson G, Lee P, Law M, Kasow DL, Pierce SD, Xue X (2002) Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology 224:797–803

    Article  PubMed  Google Scholar 

  22. Gerstner ER, Sorensen AG, Jain RK, Batchelor TT (2008) Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas. Curr Opin Neurol 21:728–735

    Article  PubMed  Google Scholar 

  23. Sorensen AG, Batchelor TT, Wen PY, Zhang WT, Jain RK (2008) Response criteria for glioma. Nat Clin Pract Oncol 5:634–644

    Article  PubMed  Google Scholar 

  24. Tate MC, Aghi MK (2009) Biology of angiogenesis and invasion in glioma. Neurotherapeuthics 6:447–457

    Article  CAS  Google Scholar 

  25. Jain R, Elika SK, Scarpace L, Rock JP, Gutierrez J, Patel SC, Ewing J, Mikkelsen T (2008) Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. AJNR Am J Neuroradiol 29:694–700

    Article  PubMed  CAS  Google Scholar 

  26. Cha S, Yang L, Johnson G, Lai A, Chen MH, Tihan T, Wenderland M, Dillon WP (2006) Comparison of microvascular permeability measurements, K trans, determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. AJNR Am J Neuroradiol 27:409–417

    PubMed  CAS  Google Scholar 

  27. Patankar TF, Haroon S, Mills SJ, Balériaux D, Buckely DL, Parker GJ, Jackson A (2005) Is volume transfer coefficient (K (trans)) related to histologic grade in human gliomas? AJNR Am J Neuroradiol 26:2455–2465

    PubMed  Google Scholar 

  28. Law M, Yang S, Babb S, Knopp EA, Golfinos JG, Zagzag D, Johnson G (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 25:746–755

    PubMed  Google Scholar 

  29. Weber MA, Zoubaa S, Schlieter M, Jüttler E, Huttner HB, Geletneky K, Ittrich C, Lichy MP, Kroll A, Debus J, Giesel FL, Hartmann M, Essig M (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66:1899–1906

    Article  PubMed  CAS  Google Scholar 

  30. Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18

    Article  PubMed  CAS  Google Scholar 

  31. Law M, Young R, Babb J, Rad M, Sasaki T, Zagzag D, Johnson G (2006) Comparing perfusion metrics obtained from a single compartment versus pharmacokinetic modeling methods using dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 27:1975–1982

    PubMed  CAS  Google Scholar 

  32. Stummer W (2007) Mechanisms of tumor-related brain edema. Neurosurg Focus 15(22):E8

    Google Scholar 

  33. Engelhorn T, Savaskan NE, Schwarz MA, Kreutzer J, Meyer EP, Hahnen E, Ganslandt O, Dörfler A, Nimsky C, Buchfelder M, Eyüpoglu IY (2009) Cellular characterization of the peritumoral edema zone in malignant brain tumors. Cancer Sci 100:1856–1862

    Article  PubMed  CAS  Google Scholar 

  34. Stewart PA, Hayakawa K, Hayakawa E, Farrell CL, Del Maestro RF (1985) A quantitative study of blood–brain barrier permeability ultrastructure in a new rat glioma model. Acta Neuropathol 67:96–102

    Article  PubMed  CAS  Google Scholar 

  35. Young R, Babb J, Law M, Pollack E, Johnson G (2007) Comparison of region-of-interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas. J Magn Reson Imaging 26:1053–1063

    Article  PubMed  Google Scholar 

  36. Law M, Young R, Babb J, Pollack E, Johnson G (2007) Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR Am J Neuroradiol 28:761–766

    PubMed  CAS  Google Scholar 

  37. Emblem KE, Nedregaard B, Nome T, Due-Tonnessen P, Hald JK, Scheie D, Borota OC, Cvancarova M, Bjornerud A (2008) Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps. Radiology 247:808–817

    Article  PubMed  Google Scholar 

  38. Järnum H, Steffensen EG, Knutsson L, Fründ ET, Simonsen CW, Lundbye-Christensen S, Shankaranarayanan A, Alsop DC, Jensen FT, Larsson EM (2010) Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 52:307–317

    Article  PubMed  Google Scholar 

  39. Haris M, Husain N, Singh A, Husain M, Srivastava S, Srivastava C, Behari S, Rathore RK, Sakjena S, Gupta RK (2008) Dynamic contrast-enhanced derived cerebral blood volume correlates better with leak correction than with no correction for vascular endothelial growth factor, microvascular density, and grading of astrocytoma. J Comp Assist Tomogr 32:955–965

    Article  Google Scholar 

  40. Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH (2005) Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 97:172–187

    Article  PubMed  CAS  Google Scholar 

  41. Ostergaard L, Hochberg FH, Rabinov JD, Sorensen AG, Lev M, Kim L, Weisskoff RM, Gonzalez RG, Gyldensted C, Rosen BR (1999) Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood–brain barrier permeability following dexamethasone treatment in patients with brain tumors. J Neurosurg 90:300–305

    Article  PubMed  CAS  Google Scholar 

  42. McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725

    Article  PubMed  CAS  Google Scholar 

  43. Bhujwalla ZM, Artemov D, Natarajan K, Solaiyappan M, Kollars P, Kristjansen PE (2003) Reduction of vascular and permeable regions in solid tumors detected by macromolecular contrast magnetic resonance imaging after treatment with antiangiogenic agent TNP-470. Clin Cancer Res 9:355–362

    PubMed  CAS  Google Scholar 

  44. Hu LS, Baxter LC, Pinnaduwage GE, Paine TL, Karis JP, Feurstein BG, Schmainda KM, Dueck AC, Debbins J, Smith KA, Nakaji P, Eschbacher JM, Coons SW, Heiserman JE (2010) Optimized preload leakage-correction methods to improve the diagnostic accuracy of dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in posttreatment gliomas. AJNR Am J Neuroradiol 31:40–48

    Article  PubMed  CAS  Google Scholar 

  45. Lüdemann L, Warmuth C, Plotkin M, Förschler A, Gutberlet M, Wust P, Amthauer H (2009) Brain tumor perfusion: comparison of dynamic contrast enhanced magnetic resonance imaging using T1, T2, and T2* contrast, pulsed arterial spin labelling, and H2(15)O positron emission tomography. Eur J Radiol 70:465–474

    Article  PubMed  Google Scholar 

  46. Paulson ES, Schmainda KM (2008) Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 249:601–613

    Article  PubMed  Google Scholar 

  47. Server A, Orheim TE, Graff BA, Josefsen R, Kumar T, Nakstad PH (2010) Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis. Neuroradiology. doi:10.1007/s00234-010-0740-3

    Google Scholar 

  48. Matsusue E, Fink JR, Rockhill JK, Ogawa T, Maravilla KR (2010) Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology 52:297–306

    Article  PubMed  Google Scholar 

  49. Levin JM, Wald LL, Kaufman MJ, Ross MH, Maas LC, Renshaw PF (1998) T1 effects in sequential dynamic susceptibility contrast experiments. J Magn Reson 130:292–295

    Article  PubMed  CAS  Google Scholar 

  50. Runge VM, Kirsch JE, Wells JW, Dunworth JN, Hilaire L, Woolfolk CE (1994) Repeat cerebral blood volume assessment with first-pass MR imaging. J Magn Reson Imaging 4:457–461

    Article  PubMed  CAS  Google Scholar 

  51. Levin JM, Kaufman MJ, Ross MH, Mendelson JH, Maas LC, Cohen BM, Renshaw PF (1995) Sequential dynamic susceptibility contrast MR experiments in human brain: residual contrast agent effect, steady state, and hemodynamic perturbation. Magn Reson Med 34:655–663

    Article  PubMed  CAS  Google Scholar 

  52. Barajas RF, Chang JS, Segal MR, Parsa AT, McDermott MW, Berger MS, Cha S (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253:486–496

    Article  PubMed  Google Scholar 

  53. Bulakbasi N, Kocaoglu M, Farzaliyev A, Tayfun U, Ucoz T, Somuncu I (2005) Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors. AJNR Am J Neuroradiol 26:2187–2199

    PubMed  Google Scholar 

  54. Shin JH, Kwun BD, Kim JS, Choi CG, Sub DC (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. AJR Am J Roentgenol 179:783–789

    PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Server.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Server, A., Graff, B.A., Orheim, T.E.D. et al. Measurements of diagnostic examination performance and correlation analysis using microvascular leakage, cerebral blood volume, and blood flow derived from 3T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in glial tumor grading. Neuroradiology 53, 435–447 (2011). https://doi.org/10.1007/s00234-010-0770-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-010-0770-x

Keywords

Navigation