Skip to main content

Advertisement

Log in

Glioma grade assessment by using histogram analysis of diffusion tensor imaging-derived maps

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Current endeavors in neuro-oncology include morphological validation of imaging methods by histology, including molecular and immunohistochemical techniques. Diffusion tensor imaging (DTI) is an up-to-date methodology of intracranial diagnostics that has gained importance in studies of neoplasia. Our aim was to assess the feasibility of discriminant analysis applied to histograms of preoperative diffusion tensor imaging-derived images for the prediction of glioma grade validated by histomorphology.

Methods

Tumors of 40 consecutive patients included 13 grade II astrocytomas, seven oligoastrocytomas, six grade II oligodendrogliomas, three grade III oligoastrocytomas, and 11 glioblastoma multiformes. Preoperative DTI data comprised: unweighted (B 0) images, fractional anisotropy, longitudinal and radial diffusivity maps, directionally averaged diffusion-weighted imaging, and trace images. Sampling consisted of generating histograms for gross tumor volumes; 25 histogram bins per scalar map were calculated. The histogram bins that allowed the most precise determination of low-grade (LG) or high-grade (HG) classification were selected by multivariate discriminant analysis. Accuracy of the model was defined by the success rate of the leave-one-out cross-validation.

Results

Statistical descriptors of voxel value distribution did not differ between LG and HG tumors and did not allow classification. The histogram model had 88.5% specificity and 85.7% sensitivity in the separation of LG and HG gliomas; specificity was improved when cases with oligodendroglial components were omitted.

Conclusion

Constructing histograms of preoperative radiological images over the tumor volume allows representation of the grade and enables discrimination of LG and HG gliomas which has been confirmed by histopathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

CNS:

Central nervous system

DICOM:

Digital Imaging and Communications in Medicine

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

FA:

Fractional anisotropy

GBM:

Glioblastoma multiforme

HG:

High grade

LG:

Low grade

MD:

Mean diffusivity (trace/3)

MDA:

Multivariate discriminant analysis

MRI:

Magnetic resonance imaging

rCBV:

Regional cerebral blood volume

ROI:

Region of interest

SPL:

Surgical Planning Laboratory

TE:

Echo time

TR:

Repetition time

WHO:

World Health Organization

References

  1. Louis DH, Ohgaki H, Wiestler OD, Cavanee WK (2007) WHO classification of tumours of the central nervous system. WHO/IARC, Lyon

    Google Scholar 

  2. Ohgaki H, Kleinues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    PubMed  CAS  Google Scholar 

  3. Cohen N, Weller RO (2007) Who classification of tumours of the central nervous system (4th edition). Neuropathol Appl Neurobiol 33:710–711. doi:10.1111/j.1365-2990.2007.00905.x

    Article  Google Scholar 

  4. Demuth T, Berens ME (2006) Molecular genetics of brain tumors—an overview. In: Newton HB (ed) Handbook of brain tumor chemotherapy, 1st edn. Academic, San Diego, pp 115–122

    Chapter  Google Scholar 

  5. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  6. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219. doi:10.1006/jmrb.1996.0086

    Article  PubMed  CAS  Google Scholar 

  7. Chun SY, Kun CL, Xuan Y, Xun MJ, Qin W (2005) Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment. Eur J Radiol 56:197–204

    Article  Google Scholar 

  8. Price SJ (2007) The role of advanced MR imaging in understanding brain tumour pathology. Br J Neurosurg 21:562–575

    Article  PubMed  Google Scholar 

  9. Rees J (2003) Advances in magnetic resonance imaging of brain tumours. Curr Opin Neurol 16:643–650

    Article  PubMed  Google Scholar 

  10. Sinha S, Bastin ME, Whittle IR, Wardlaw JM (2002) Diffusion tensor MR imaging of high-grade cerebral gliomas. AJNR Am J Neuroradiol 23:520–527

    PubMed  Google Scholar 

  11. Tropine A, Vucurevic G, Delani P et al (2004) Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas. J Magn Reson Imaging 20:905–912. doi:10.1002/jmri.20217

    Article  PubMed  CAS  Google Scholar 

  12. Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088

    PubMed  CAS  Google Scholar 

  13. Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60

    Article  PubMed  CAS  Google Scholar 

  14. Zimmerman RD (2001) Is there a role for diffusion-weighted imaging in patients with brain tumors or is the “bloom off the rose”? AJNR Am J Neuroradiol 22:1013–1019

    PubMed  CAS  Google Scholar 

  15. Khayal IS, McKnight TR, McGue C et al (2009) Apparent diffusion coefficient and fractional anisotropy of newly diagnosed grade II gliomas. NMR Biomed 22:449–455

    Article  PubMed  Google Scholar 

  16. Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H (2005) Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg 107:174–180. doi:10.1016/j.clineuro.2004.06.011

    Article  PubMed  Google Scholar 

  17. Goebell E, Paustenbach S, Vaeterlein O et al (2006) Low-grade and anaplastic gliomas: differences in architecture evaluated with diffusion-tensor MR imaging. Radiology 239:217–222. doi:10.1148/radiol.2383050059

    Article  PubMed  Google Scholar 

  18. Murakami R, Hirai T, Sugahara T et al (2009) Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one- versus two-parameter pilot. Radiology 251:838–845

    Article  PubMed  Google Scholar 

  19. Verma R, Zacharaki EI, Ou Y et al (2008) Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Acad Radiol 15:966–977. doi:10.1016/j.acra.2008.01.029

    Article  PubMed  Google Scholar 

  20. Emblem KE, Scheie D, Due-Tonnessen P et al (2008) Histogram analysis of MR imaging-derived cerebral blood volume maps: combined glioma grading and identification of low-grade oligodendroglial subtypes. AJNR Am J Neuroradiol 29:1664–1670. doi:10.3174/ajnr.A1182

    Article  PubMed  CAS  Google Scholar 

  21. Tozer DJ, Jäger HR, Danchaivijitr N et al (2007) Apparent diffusion coefficient histograms may predict low-grade glioma subtype. NMR Biomed 20:49–57. doi:10.1002/nbm.1091

    Article  PubMed  Google Scholar 

  22. Law M, Young R, Babb J, Pollack E, Johnson G (2007) Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR Am J Neuroradiol 28:761–766

    PubMed  CAS  Google Scholar 

  23. Dehmeshki J, Ruto AC, Arridge S, Silver NC, Miller DH, Tofts PS (2001) Analysis of MTR histograms in multiple sclerosis using principal components and multiple discriminant analysis. Magn Reson Med 46:600–609

    Article  PubMed  CAS  Google Scholar 

  24. Dehmeshki J, Van Buchem MA, Bosma GPT, Huizinga TWJ, Tofts PS (2002) Systemic lupus erythematosus: diagnostic application of magnetization transfer ratio histograms in patients with neuropsychiatric symptoms. Radiology 222:722–728

    Article  PubMed  Google Scholar 

  25. Pieper S, Lorensen B, Schroeder W, Kikinis R (2006) The NA-MIC Kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community. Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro 1, pp 698–701

  26. Wang W, Steward CE, Desmond PM (2009) Diffusion tensor imaging in glioblastoma multiforme and brain metastases: the role of p, q, L, and fractional anisotropy. AJNR Am J Neuroradiol 30:203–208

    Article  PubMed  CAS  Google Scholar 

  27. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with image. J Biophotonics Int 11:36–42

    Google Scholar 

  28. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188

    Article  Google Scholar 

  29. Ripley BD (1997) Pattern recognition and neural networks. Cambridge University Press, Cambridge, p 91

    Google Scholar 

  30. Webb A (1999) Statistical pattern recognition. Oxford University Press, New York, p 6

    Google Scholar 

  31. Fukunaga K, Hayes R (1989) Estimation of classifier performance. IEEE Trans Pattern Anal Mach Intell 11:1087–1097

    Article  Google Scholar 

  32. Stadlbauer A, Ganslandt O, Buslei R et al (2006) Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiology 240:803–810. doi:10.1148/radiol.2403050937

    Article  PubMed  Google Scholar 

  33. Beppu T, Inoue T, Shibata Y et al (2005) Fractional anisotropy value by diffusion tensor magnetic resonance imaging as a predictor of cell density and proliferation activity of glioblastomas. Surg Neurol 63:56–61. doi:10.1016/j.surneu.2004.02.034

    Article  PubMed  Google Scholar 

  34. Calvar JA, Meli FJ, Romero C et al (2005) Characterization of brain tumors by MRS, DWI and ki-67 labeling index. J Neurooncol 72:273–280

    Article  PubMed  CAS  Google Scholar 

  35. Higano S, Yun X, Kumabe T et al (2006) Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 241:839–846. doi:10.1148/radiol.2413051276

    Article  PubMed  Google Scholar 

  36. Mardor Y, Roth Y, Ocherashvilli A et al (2004) Pretreatment prediction of brain tumors’ response to radiation therapy using high b-value diffusion-weighted MRI. Neoplasia 6:136–142

    Article  PubMed  Google Scholar 

  37. Pope WB, Kim HJ, Huo J et al (2009) Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 252:182–189

    Article  PubMed  Google Scholar 

  38. Lee HY, Na D et al (2008) Diffusion-tensor imaging for glioma grading at 3-T magnetic resonance imaging: analysis of fractional anisotropy and mean diffusivity. J Comput Assist Tomogr 32:298–303. doi:10.1097/RCT.0b013e318076b44d

    Article  PubMed  Google Scholar 

  39. Ferda J, Kastner J, Mukenšnabl P et al (2010) Diffusion tensor magnetic resonance imaging of glial brain tumors. Eur J Radiol 74:428–436

    Article  PubMed  Google Scholar 

  40. Arvinda H, Kesavadas C, Sarma P et al (2009) Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol 94:87–96

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of 164/2006 grant of Medical Research Council of Ministry of Health, Hungary. P. Molnár is generously supported by a research grant of VFK Krebsforschung GmbH, Germany.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Jakab.

Appendix

Appendix

Mathematical equations used for generating scalar maps

$$ {\hbox{FA}} = \sqrt {{\frac{2}{3}}} \; \times \;\sqrt {{\frac{{{{\left( {{\lambda_1} - \overline \lambda } \right)}^2} + {{\left( {{\lambda_2} - \overline \lambda } \right)}^2} + {{\left( {{\lambda_3} - \overline \lambda } \right)}^2}}}{{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}}} $$
(1)
$$ {\lambda_\parallel } = {\lambda_1} $$
(2)
$$ \lambda \bot = {{{\left( {{\lambda_2} + {\lambda_3}} \right)}} \left/ {2} \right.} $$
(3)
$$ {\hbox{Trace}} = {\lambda_1} + {\lambda_2} + {\lambda_3} $$
(4)

where λ 1, λ 2, and λ 3 are the three eigenvalues of the diffusion tensor and \( \overline \lambda \) stands for the mean of the three eigenvalues.

$$ {\hbox{S}}{{\hbox{I}}_{\rm{DWI}}} = {\hbox{S}}{{\hbox{I}}_{\rm{T2}}}\; \times \;{{\hbox{e}}^{ - \left( { - b\; \times \;{\rm{ADC}}} \right)}} $$
(5)

where SIDWI is the signal intensity of the voxels on the DWI images, SIT2 means the signal intensity on T2 acquisitions (b 0 images). ADC is the apparent diffusion coefficient while b is a factor reflecting the strength of diffusion weighting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakab, A., Molnár, P., Emri, M. et al. Glioma grade assessment by using histogram analysis of diffusion tensor imaging-derived maps. Neuroradiology 53, 483–491 (2011). https://doi.org/10.1007/s00234-010-0769-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-010-0769-3

Keywords

Navigation