Skip to main content

Advertisement

Log in

Detection of changes in cerebrospinal fluid space in idiopathic normal pressure hydrocephalus using voxel-based morphometry

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

We attempted to detect alterations in the cerebrospinal fluid (CSF) space in patients with idiopathic normal pressure hydrocephalus (iNPH) using voxel-based morphometry (VBM).

Methods

We obtained sagittal volume images of the entire head by three-dimensional T1-weighted magnetic resonance imaging and compared the regional distribution of CSF in 12 patients with iNPH, 14 patients with Alzheimer’s disease (AD), and 17 healthy individuals using VBM with automatically extracted CSF objects.

Results

VBM demonstrated significant widening at the lateral ventricles and Sylvian fissures and narrowing of the CSF space at the high convexity/midline areas in iNPH patients, compared to the AD patients and healthy controls (p < 0.05, after correction with a false-discovery rate). In addition, the ratio of the CSF volume in the lateral ventricle/Sylvian fissure area to that in the high convexity/midline area in iNPH patients (3.9 ± 1.2) was remarkably greater than that in AD patients (1.2 ± 0.3) and controls (0.9 ± 0.3; one-way ANOVA, p < 0.001; post hoc Tukey’s test, p < 0.001); we could discriminate iNPH patients from those in the other two groups without any overlap, when using a cutoff level of 1.9.

Conclusion

VBM using CSF objects can be used to delineate the characteristic alteration of the CSF space in iNPH patients, which has been evaluated by visual interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57:S4–S16

    PubMed  Google Scholar 

  2. Ishikawa M, Hashimoto M, Kuwana N, Mori E, Miyake H, Wachi A, Takeuchi T, Kazui H, Koyama H (2008) Guidelines for management of idiopathic normal pressure hydrocephalus. Neurol Med Chir (Tokyo) 48:S1–S23

    Article  Google Scholar 

  3. Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T (1998) CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol 19:1277–1284

    CAS  PubMed  Google Scholar 

  4. Sasaki M, Honda S, Yuasa T, Iwamura A, Shibata E, Ohba H (2008) Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected by axial and coronal MRI. Neuroradiology 50:117–122

    Article  PubMed  Google Scholar 

  5. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821

    Article  CAS  PubMed  Google Scholar 

  6. Baron JC, Chetelat G, Desgranges B, Perchey G, Landeau B, de la Sayette V, Eustache F (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 14:298–309

    Article  CAS  PubMed  Google Scholar 

  7. Karas GB, Burton EJ, Rombouts SA, van Schijndel RA, O’Brien JT, Scheltens P, McKeith IG, Williams D, Ballard C, Barkhof F (2003) A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. Neuroimage 18:895–907

    Article  CAS  PubMed  Google Scholar 

  8. Rosen HJ, Gorno-Tempini ML, Goldman WP, Perry RJ, Schuff N, Weiner M, Feiwell R, Kramer JH, Miller BL (2002) Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 58:198–208

    CAS  PubMed  Google Scholar 

  9. Josephs KA, Whitwell JL, Dickson DW et al (2008) Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol Aging 29:280–289

    Article  PubMed  Google Scholar 

  10. Burton EJ, Karas G, Paling SM, Barber R, Williams ED, Ballard CG, McKeith IG, Scheltens P, Barkhof F, O’Brien JT (2002) Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry. Neuroimage 17:618–630

    Article  CAS  PubMed  Google Scholar 

  11. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944

    CAS  PubMed  Google Scholar 

  12. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 8:95–113

    Article  Google Scholar 

  13. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878

    Article  PubMed  Google Scholar 

  14. Brett M, Anton J, Valabregue R (2002) Region of interest analysis using an SPM toolbox. 8th International Conference on Functional Mapping of the Human Brain (abstract)

  15. Adachi M, Kawanami T, Ohshima F, Kato T (2006) Upper midbrain profile sign and cingulate sulcus sign: MRI findings on sagittal images in idiopathic normal-pressure hydrocephalus, Alzheimer’s disease, and progressive supranuclear palsy. Radiat Med 24:568–572

    Article  PubMed  Google Scholar 

  16. Bateman GA, Levi CR, Schofield P, Wang Y, Lovett EC (2005) The pathophysiology of the aqueduct stroke volume in normal pressure hydrocephalus: can co-morbidity with other forms of dementia be excluded? Neuroradiology 47:741–748

    Article  PubMed  Google Scholar 

  17. Tullberg M, Jensen C, Ekholm S, Månsson JE, Fredman P, Wikkelsø C (2001) Normal pressure hydrocephalus: vascular white matter changes on MR images must not exclude patients from shunt surgery. AJNR Am J Neuroradiol 22:1665–1673

    CAS  PubMed  Google Scholar 

  18. Vanneste J, Augustijn P, Davies GA, Dirven C, Tan WF (1992) Normal-pressure hydrocephalus. Is cisternography still useful in selecting patients for a shunt? Arch Neurol 49:366–370

    CAS  PubMed  Google Scholar 

  19. Della Nave R, Ginestroni A, Tessa C, Cosottini M, Giannelli M, Salvatore E, Sartucci F, De Michele G, Dotti MT, Piacentini S, Mascalchi M (2008) Brain structural damage in spinocerebellar ataxia type 2. A voxel-based morphometry study. Mov Disord 23:899–903

    Article  PubMed  Google Scholar 

  20. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36

    Article  CAS  PubMed  Google Scholar 

  21. Kaasinen V, Maguire RP, Kurki T, Brück A, Rinne JO (2005) Mapping brain structure and personality in late adulthood. Neuroimage 24:315–322

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Health and Labour Sciences Research Grant from the Ministry of Health, Labor, and Welfare, Japan (2008-Nanchi-17) and by a Grant-in-Aid for Strategic Medical Science Research Center from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Yamashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, F., Sasaki, M., Takahashi, S. et al. Detection of changes in cerebrospinal fluid space in idiopathic normal pressure hydrocephalus using voxel-based morphometry. Neuroradiology 52, 381–386 (2010). https://doi.org/10.1007/s00234-009-0610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-009-0610-z

Keywords

Navigation