Skip to main content

Advertisement

Log in

Intraoperative MRI to guide the resection of primary supratentorial glioblastoma multiforme—a quantitative radiological analysis

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Patients with supratentorial high-grade glioma underwent surgery within a vertically open 0.5-T magnetic resonance (MR) system to evaluate the efficacy of intraoperative MR guidance in achieving gross-total resection. For 31 patients, preoperative clinical data and MR findings were consistent with the putative diagnosis of a high-grade glioma, in 23 cases in eloquent regions. Tumor resections were carried out within a 0.5-T MR SIGNA SP/i (GE Medical Systems, USA). The resection of the lesion was carried out using fully MR compatible neurosurgical equipment and was stopped at the point when the operation was considered complete by the surgeon viewing the operation field with the microscope. We repeated imaging to determine the residual tumor volume only visible with MRI. Areas of tissue that were abnormal on these images were localized in the bed of resection by using interactive MR guidance. The procedure of resection, imaging control and interactive image guidance was repeated where necessary. Almost all tissue with abnormal characteristics was resected, with the exception of tissue localized in eloquent brain areas. The diagnosis of glioblastoma was confirmed in all 31 cases. When comparing the tumor volume before resection and at the point where the neurosurgeon would otherwise have terminated surgery (“first control”), residual tumor tissue was detectable in 29/31 patients; the mean residual tumor volume was 30.7±24%. After repeated resections under interactive image guidance the mean residual tumor volume was 15.1%. At this step we found tumor remnants only in 20/31 patients. The perioperative morbidity (12.9%) was low. Twenty-seven patients underwent sufficient postoperative radiotherapy. We found a significant difference (logrankp=0.0037) in the mean survival times of the two groups with complete resection (n=10, median survival time 537 days) and incomplete resection (n=17, median survival time 237 days). The resection of primary glioblastoma multiforme under intraoperative MR guidance as demonstrated is a possibility to achieve a more complete removal of the tumor than with conventional techniques. In our small but homogeneous patient group we found an increase in the median survival time in patients with MRI for complete tumor resection, and the overall surgical morbidity was low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kreth FW, Berlis A, Spiropoulu V et al (1999) The role of tumor resection in the treatment of glioblastoma multiforme in adults. Cancer 86:2117–2123

    Article  CAS  PubMed  Google Scholar 

  2. Kowalczuk A, Macdonald RL, Amidei C et al (1997) Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery 41:1028–1036

    Article  CAS  PubMed  Google Scholar 

  3. Puchner MJ, Herrmann HD, Berger J, Cristante L (2000) Surgery, tamoxifen, carboplatin, and radiotherapy in the treatment of newly diagnosed glioblastoma patients. J Neurooncol 49:147–155

    Article  CAS  PubMed  Google Scholar 

  4. Hulshof MC, Koot RW, Schimmel EC, Dekker F, Bosch DA, Gonzalez D (2001) Prognostic factors in glioblastoma multiforme. 10 years experience of a single institution. Strahlenther Onkol 177:283–290

    CAS  PubMed  Google Scholar 

  5. Paszat L, Laperriere N, Groome P, Schulze K, Mackillop W, Holowaty E (2001) A population-based study of glioblastoma multiforme. Int J Radiat Oncol Biol Phys 51:100–107

    Google Scholar 

  6. Latif AZB, Signorini DF, Whittle IR (1998) Treatment by a specialist surgical neuro-oncologist does not provide any survival advantage for patients with a malignant glioma. Br J Neurosurg 12:29–32

    Article  CAS  PubMed  Google Scholar 

  7. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198

    CAS  Google Scholar 

  8. Imperato JP, Paleologos NA, Vick NA (1990) Effects of treatment on long-term survivors with malignant astrocytomas. Ann Neurol 28:818–822

    Article  CAS  PubMed  Google Scholar 

  9. Keles GE, Anderson B, Berger MS (1999) The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol 52:371–379

    Article  CAS  PubMed  Google Scholar 

  10. Chandler KL, Prados MD, Malec M, Wilson CB (1993) Long-term survival in patients with glioblastoma multiforme. Neurosurgery 32:716–720

    CAS  PubMed  Google Scholar 

  11. Miller PJ, Hassanein RS, Giri PGS, Kimler BF, O’Boynick P, Evans RG (1990) Univariate and multivariate statistical analysis of high-grade gliomas: the relationship of radiation dose and other prognostic factors. Int J Rad Oncol Biol Phys 19:275–280

    Google Scholar 

  12. Nazzaro JM, Neuwelt EA (1990) The role of surgery in the management of supratentorial intermediate and high-grade astrocytomas in adults. J Neurosurg 73:331–344

    PubMed  Google Scholar 

  13. Wood JR, Green SB, Shapiro WR (1988) The prognostic importance of tumor size in malignant gliomas: a computed tomographic scan study by the Brain Tumor Cooperative Group. J Clin Oncol 6:338–343

    CAS  PubMed  Google Scholar 

  14. Kreth FW, Warnke PC, Scheremet R, Ostertag CB (1993) Surgical resection and radiation therapy versus biopsy and radiation therapy in the treatment of glioblastoma multiforme. J Neurosurg 78:762–766

    CAS  PubMed  Google Scholar 

  15. Weir B (1973) The relative significance of factors affecting postoperative survival in astrocytomas, grades 3 and 4. J Neurosurg 38:448–452

    CAS  PubMed  Google Scholar 

  16. Scanlon PW, Taylor WF (1979) Radiotherapy of intracranial astrocytomas: analysis of 417 cases treated from 1960 through 1669. Neurosurgery 5:301–308

    CAS  PubMed  Google Scholar 

  17. Finlay JL, Wisoff JH (1999) The impact of extent of resection in the management of malignant gliomas of childhood. Childs Nerv Syst 15:786–788

    Article  CAS  PubMed  Google Scholar 

  18. Quigley MR (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and influence on regrowth and prognosis. Neurosurgery 34:1105

    CAS  Google Scholar 

  19. Albert FK, Forsting M, Sartor K, Adams HP, Kunze S (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34:45–60

    CAS  PubMed  Google Scholar 

  20. Ammirati M, Vick N Liao YL, Ciric I, Mikhael M (1987) Effect of the extent of surgical resection on survival and quality of life in patients with supratentorial glioblastomas and anaplastic astrocytomas. Neurosurgery 21:210–206

    Google Scholar 

  21. Wirtz CR, Albert FK, Schwaserer M et al (2000) The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery. Neurol Res 22:354–360

    CAS  PubMed  Google Scholar 

  22. Knauth M, Wirtz CR, Tronnier VM, Aras N, Kunze S, Sartor K (1999) Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas. AJNR Am J Neuroradiol 20:1642–1646

    CAS  PubMed  Google Scholar 

  23. Trantakis C, Winkler D, Lindner D et al (2002) Clinical results in MR-guided therapy for malignant gliomas. Acta Neurochir 85:65–71

    Google Scholar 

  24. Wirtz CR, Knauth M, Staubert A et al (2000) Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 46:1120–1122

    Google Scholar 

  25. Laufer M, Schaffranietz L, Rudolph C, Schneider JP, Schulz T (1999) Anesthesiologic technical problems in procedures with open MRI Results following 104 anesthesias. Anaesthesist 48:51–56

    Article  CAS  PubMed  Google Scholar 

  26. Schneider JP, Schulz T, Schmidt F et al (2001) Gross-total surgery of supratentorial low-grade gliomas under intraoperative MR guidance. AJNR Am J Neuroradiol 22:89–98

    CAS  PubMed  Google Scholar 

  27. Schenck JF, Jolesz FA, Roemer PB et al (1995) Superconducting open-configuration MR imaging system for image-guided therapy. Radiology 195:805–814

    CAS  PubMed  Google Scholar 

  28. Schulz T, Schneider JP, Winkel A et al (1999) MR-track pointer. A reusable device for localization during interventions. Fortschr Röntgenstr 171:244–248

    CAS  Google Scholar 

  29. Seifert V, Zimmermann M, Trantakis C et al (1999) Open MRI-guided neurosurgery. Acta Neurochir (Wien) 141:455–464

    CAS  Google Scholar 

  30. Schwartz RB, Hsu L, Wong TZ et al (1999) Intraoperative MR imaging guidance for intracranial neurosurgery: experience with the first 200 cases. Radiology 211:477–488

    CAS  PubMed  Google Scholar 

  31. Schmidt F, Dietrich J, Schneider JP et al (1998) Technological and logistic problems and first clinical results of an interventional 0.5-T MRI system used by various medical specialties. Radiologe 38:173–184

    CAS  PubMed  Google Scholar 

  32. Schwartz RB, Kacher DF, Pergolizzi RS, Jolesz FA (2001) Intraoperative MR systems—midfield approaches. Neuroimaging Clin N Am 11:629–644

    CAS  PubMed  Google Scholar 

  33. Kraus JA, Wenghoefer M, Schmidt MC et al (2000) Long-term survival of glioblastoma multiforme: importance of histopathological reevaluation. J Neurol 247:455–460

    CAS  PubMed  Google Scholar 

  34. Dietrich J, Schneider JP, Schulz T, Seifert V, Trantakis C, Kellermann S (1998) Appearance of the resection area of brain tumors in intraoperative MRI. Radiologe 38:935–942

    CAS  PubMed  Google Scholar 

  35. Dietrich J, Schulz T, Schneider JP, Trantakis C, Vitzthum HE (1999) Brain tumor resections in an open 0.5-T MR. 2 years experience from the neuroradiological viewpoint. Radiologe 39:988–994

    CAS  PubMed  Google Scholar 

  36. Shi WM, Wildrick DM, Sawaya R (1998) Volumetric measurement of brain tumors from MR imaging. J Neurooncol 37:87–93

    CAS  PubMed  Google Scholar 

  37. Shinoda J, Sakai N, Murase S, Yano H, Matsuhisa T, Funajoshi T (2001) Selection of eligible patients with supratentorial glioblastoma multiforme for gross total resection. J Neurooncol 52:161–171

    CAS  PubMed  Google Scholar 

  38. Black PM, Alexander E III, Martin C et al (1999) Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 45:423–433

    CAS  PubMed  Google Scholar 

  39. Bohinsky RJ, Kokkino AK, Warnick RE et al (2001) Glioma resection in a shared-resource magnetic resonance operating room after optimal image-guided frameless stereotactic resection. Neurosurgery 48:731–742

    CAS  PubMed  Google Scholar 

  40. Trantakis C, Tittgemeyer M, Schneider JP et al (2003) Investigation of time-dependency of intracranial brain shift and its relation to the extent of tumor removal using intra-operative MRI. Neurol Res 25:9–12

    PubMed  Google Scholar 

  41. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47:1070–1080

    Article  CAS  PubMed  Google Scholar 

  42. Nabavi A, Black PMcL, Gering DT et al (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48:787–796

    CAS  PubMed  Google Scholar 

  43. Martin AJ, Hall WA, Liu H et al (2001) Brain tumor resection: intraoperative monitoring with high field strength MR imaging—initial results. Radiology 215:221–228

    Google Scholar 

  44. van Velthofen V, Auer LM (1990) Practical application of intraoperative ultrasound imaging. Acta Neurochir 105:5–13

    Article  Google Scholar 

  45. Woydt, M, Krone A, Becker G, Schmidt K, Roggendorf W, Roosen K (1996) Correlation of intra-operative ultrasound with histopathologic findings after tumor resection in supratentorial gliomas. Acta Neurochir 138:1391–1398

    CAS  Google Scholar 

  46. Hall WA, Liu H, Martin AJ, Pozza CH, Maxwell RE, Truwit CL (2000) Safety, efficacy, and functionality of high-field strength interventional magnetic resonance imaging for neurosurgery. Neurosurgery 46:632–642

    CAS  PubMed  Google Scholar 

  47. Bradley WG (2000) Achieving gross total resection of brain tumors: intraoperative MR imaging can make a big difference. AJNR Am J Neuroradiol 23:348–349

    Google Scholar 

  48. Alexander E (2001) Optimizing brain tumor resection—midfield interventional MR imaging. Neuroimaging Clin N Am 11:659–672

    PubMed  Google Scholar 

  49. Tummala RP, Chu RM, Liu H, Truwit CL, Hall WA (2001) Optimizing brain tumor resection—high-field interventional MR imaging. Neuroimaging Clin N Am 11:673–683

    CAS  PubMed  Google Scholar 

  50. Metzger AK, Lewin JS (2001) Optimizing brain tumor resection—low-field interventional MR imaging. Neuroimaging Clin N Am 11:651–657

    CAS  PubMed  Google Scholar 

  51. Schulder M, Liang D, Carmel PW (2001) Cranial surgery navigation aided by a compact intraoperative magnetic resonance imager. J Neurosurg 94:936–945

    CAS  PubMed  Google Scholar 

  52. Sutherland GR, Kaibara T, Louw D, Hoult DI, Tomanek B, Saunders J (1999) A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg 91:804–813

    CAS  PubMed  Google Scholar 

  53. Kelly PJ (1995) CT/MRI-based computer-assisted volumetric stereotactic resection of intracranial lesions. In: Schmidek HH, Sweet WH (eds) Operative neurosurgical techniques, 3rd edn. W.B. Saunders, Philadelphia, pp 619–635

    Google Scholar 

  54. Devaux BC, O’Fallon JR, Kelly PJ (1993) Resection, biopsy and survival in malignant glial neoplasms: a retrospective study of clinical parameters, therapy and outcome. J Neurosurg 78:767–775

    CAS  PubMed  Google Scholar 

  55. Knauth M, Aras N, Wirtz CR, Dorfler A, Engelhorn T, Sartor K (1999) Surgically induced intracranial contrast enhancement. AJNR Am J Neuroradiol 20:1547–1553

    CAS  PubMed  Google Scholar 

  56. Spetzger U, Thron A, Gilsbach JM (1998) Immediate postoperative CT contrast enhancement following surgery of cerebral tumoral lesions. J Comput Assist Tomogr 22:120–125

    CAS  PubMed  Google Scholar 

  57. Cairncross JG, Pexman JHW, Rathbone MP, Delmaestro RF (1985) Postoperative contrast enhancement in patients with brain tumor. Ann Neurol 17:570–572

    CAS  PubMed  Google Scholar 

  58. Jeffries BF, Kishore PRS, Singh KS, Ghatak NR, Krempa J (1981) Contrast enhancement in the postoperative brain. Radiology 139:409–413

    CAS  PubMed  Google Scholar 

  59. Elster AD, Jackels SC, Allen NS, Marrache RC (1989) Europium-DTPA: a gadolinium analogue traceable by fluorescence microscopy. AJNR Am J Neuroradiol 10:1137–1144

    CAS  PubMed  Google Scholar 

  60. Rubino GJ, Villablanca JP, Lycette C, Farahani K, Alger J (2000) Spread of contrast enhancement observed in high grade gliomas in a non-operative setting. Proc Int Soc Mag Reson Med 8:64

    Google Scholar 

  61. Schneider JP, Richter A, Lodemann KP et al (2002) Spread of contrast enhancement in supratentorial high grade gliomas—comparison of Gadobenate-Dimeglumine and Gadolinium-DTPA at 0.5 T. Eur Radiol 12:F30

    Google Scholar 

  62. Varallyay P, Nesbit G, Muldoon LL et al (2002) Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors. AJNR Am J Neuroradiol 23:510–519

    PubMed  Google Scholar 

  63. Moche M, Busse H, Dannenberg C et al (2001) Image fusion of MRI and fMRI with intraoperative MRI data: methods and clinical relevance for neurosurgical interventions. Radiologe 41:993–1000

    CAS  PubMed  Google Scholar 

  64. Stummer W, Stocker S, Wagner S et al (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42:518–526

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens P. Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, J.P., Trantakis, C., Rubach, M. et al. Intraoperative MRI to guide the resection of primary supratentorial glioblastoma multiforme—a quantitative radiological analysis. Neuroradiology 47, 489–500 (2005). https://doi.org/10.1007/s00234-005-1397-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-005-1397-1

Keywords

Navigation