Skip to main content
Log in

Radiation dose in vertebroplasty

  • Interventional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

We wished to measure the absorbed radiation dose during fluoroscopically controlled vertebroplasty and to assess the possibility of deterministic radiation effects to the operator. The dose was measured in 11 consecutive procedures using thermoluminescent ring dosimeters on the hand of the operator and electronic dosimeters inside and outside of the operator’s lead apron. We found doses of 0.022–3.256 mGy outside and 0.01–0.47 mGy inside the lead apron. Doses on the hand were higher, 0.5–8.5 mGy. This preliminary study indicates greater exposure to the operator’s hands than expected from traditional apron measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin JB, Jean B, Sugiu K, et al (1999) Vertebroplasty: clinical experience and follow-up results. Bone 25 [Suppl 2]:11S–15S

  2. Grados F, Depriester C, Cayrolle G, Hardy N, Deramond H, Fardellone P (2000) Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology 39:1410–1414

    CAS  PubMed  Google Scholar 

  3. Mathis JM, Barr JD, Belkoff SM, Barr MS, Jensen ME, Deramond H (2001) Percutaneous vertebroplasty: a developing standard of care for vertebral compression fractures. AJNR 22:373–381

    CAS  PubMed  Google Scholar 

  4. Deramond H, Depriester C, Galibert P, Le Gars D (1998) Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am 36:533–546

    CAS  PubMed  Google Scholar 

  5. Miller DL, Balter S, Noonan PT, Georgia JD (2002) Minimizing radiation-induced skin injury in interventional radiology procedures. Radiology 225:329–336

    PubMed  Google Scholar 

  6. Fletcher DW, Miller DL, Balter S, Taylor MA (2002) Comparison of four techniques to estimate radiation dose to skin during angiographic and interventional radiology procedures. J Vasc Interv Radiol 13:391–397

    PubMed  Google Scholar 

  7. Papadimitriou D, Perris A, Molfetas MG, et al (2001) Patient dose, image quality and radiographic techniques for common X ray examinations in two Greek hospitals and comparison with European guidelines. Radiat Prot Dosimetry 95:43–48

    CAS  PubMed  Google Scholar 

  8. Hare C, Halligan S, Bartram CI, Gupta R, Walker AE, Renfrew I (2001) Dose reduction in evacuation proctography. Eur Radiol 11:432–434

    Article  CAS  PubMed  Google Scholar 

  9. Mooney RB, McKinstry J (2001) Paediatric dose reduction with the introduction of digital fluorography. Radiat Prot Dosimetry 94:117–120

    CAS  PubMed  Google Scholar 

  10. Kotre CJ, Marshall NW (2001) A review of image quality and dose issues in digital fluorography and digital subtraction angiography. Radiat Prot Dosimetry 94:73–76

    CAS  PubMed  Google Scholar 

  11. Marshall NW, Chapple CL, Kotre CJ (2000) Diagnostic reference levels in interventional radiology. Phys Med Biol 45:3833–3846

    Article  CAS  PubMed  Google Scholar 

  12. Langer M, Golde G, Fiegler W, Felix R (1984) Radiation exposure of the examiner during digital subtraction angiography in the continuous-mode operation. Fortschr Geb Röntgenstr Nuklearmed 141:544–545

    Google Scholar 

  13. Kuon E, Schmitt M, Dahm JB (2002) Significant reduction of radiation exposure to operator and staff during cardiac interventions by analysis of radiation leakage and improved lead shielding. Am J Cardiol 89:44–49

    Article  PubMed  Google Scholar 

  14. Britton CA, Wholey MH (1988) Radiation exposure of personnel during digital subtraction angiography. Cardiovasc Intervent Radiol 11:108–110

    CAS  PubMed  Google Scholar 

  15. Fransson SG, Persliden J (2000) Patient radiation exposure during coronary angiography and intervention. Acta Radiol 41:142–144

    Article  CAS  PubMed  Google Scholar 

  16. Fuchs M, Modler H, Schmid A, Dumont C, Sturmer KM (1999) Measuring intraoperative radiation exposure of the trauma surgeon. Measuring eye, thyroid gland and hand with highly sensitive thermoluminescent detectors. Unfallchirurg 102:371–376

    Article  CAS  PubMed  Google Scholar 

  17. Zweers D, Geleijns J, Aarts NJ, et al (1998) Patient and staff radiation dose in fluoroscopy-guided TIPS procedures and dose reduction, using dedicated fluoroscopy exposure settings. Br J Radiol 71:672–676

    CAS  PubMed  Google Scholar 

  18. Waggershauser T, Herrmann K, Schatzl M, Reiser M (1995) Reducing radiation dosage with modern DSA equipment. Radiologe 35:148–151

    CAS  PubMed  Google Scholar 

  19. Ishiguchi T, Nakamura H, Okazaki M, et al (2000) Radiation exposure to patient and radiologist during transcatheter arterial embolization for hepatocellular carcinoma. Nippon Igaku Hoshasen Gakkai Zasshi 60:839–844

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. O. Lovblad.

Additional information

Presented at the Annual Meeting of the European Society of Neuroradiology in Istanbul, Turkey, September 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehdizade, A., Lovblad, K.O., Wilhelm, K.E. et al. Radiation dose in vertebroplasty. Neuroradiology 46, 243–245 (2004). https://doi.org/10.1007/s00234-003-1156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-003-1156-0

Keywords

Navigation