Skip to main content
Log in

Modulation type spaces for generators of polynomially bounded groups and Schrödinger equations

  • Research Article
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

We introduce modulation type spaces associated with the generators of polynomially bounded groups. Besides strongly continuous groups we study in detail the case of bi-continuous groups, e.g. weak\(^*\)-continuous groups in dual spaces. It turns out that this gives new insight in situations where generators are not densely defined. Classical modulation spaces are covered as a special case but the abstract formulation gives more flexibility. We illustrate this with an application to a nonlinear Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bényi, A., Gröchenig, K., Okoudjou, K.A., Rogers, L.G.: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal. 246(2), 366–384 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bényi, A., Okoudjou, K.A.: Local well-posedness of nonlinear dispersive equations on modulation spaces. Bull. Lond. Math. Soc. 41(3), 549–558 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaichenets, L., Hundertmark, D., Kunstmann, P., Pattakos, N.: Local well-posedness for the nonlinear Schrödinger equation in modulation space \(M_{p,q}^s ({\mathbb{R}}^d)\). arXiv:1610.08298

  4. Feichtinger, H.G.: Modulation Spaces Over Locally Compact Abelian Groups. Technical report, University Vienna (1983)

  5. Feichtinger, H.G.: Modulation spaces: looking back and ahead. Sampl. Theory Signal Imaging Process. 5(2), 109–140 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Feichtinger, H.G., Narimani, G.: Fourier multipliers of classical modulation spaces. Appl. Comput. Harmon. Anal. 21, 349–359 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Haase, M.: The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications, vol. 169. Birkhäuser, Basel (2006)

    Book  MATH  Google Scholar 

  8. Haase, M.: Abstract extensions of functional calculi. In: Zemánek, J., Tomilov, Y. (eds.) Études Opératorielles, vol. 112, pp. 153–170. Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences, Warsaw (2017)

    Google Scholar 

  9. Haase, M.: Lectures on Functional Calculus, 21st International Internet Seminar (2018). https://www.math.uni-kiel.de/isem21/en/course/phase1/isem21-lectures-on-functional-calculus. Accessed 6 March 2019

  10. Kühnemund, F.: A Hille-Yosida theorem for bi-continuous semigroups. Semigroup Forum 67(2), 205–255 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kriegler, C.: Functional calculus and dilation for \(C_0\)-groups of polynomial growth. Semigroup Forum 84, 393–433 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kriegler, C., Weis, L.: Spectral multiplier theorems and averaged \(R\)-boundedness. Semigroup Forum 94, 260–296 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, B., Hudzik, H.: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equ. 232, 36–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peer Christian Kunstmann.

Additional information

Communicated by Abdelaziz Rhandi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author acknowledges support by the DFG through CRC 1173.

Appendix A. Two auxiliary results

Appendix A. Two auxiliary results

Here we provide proofs for a well-known result on the short time Fourier transform and for the contruction of \(\tau _X\)-Riemann type integrals with respect to measures \(\mu \in {\mathscr {M}}({\mathbb {R}})\).

Fix \(g\in {\mathscr {S}}({\mathbb {R}}){\setminus }\{0\}\). The short-time Fourier transform with window g of \(f\in {\mathscr {S}}'({\mathbb {R}})\) is the function \(V_gf:{\mathbb {R}}\times {\mathbb {R}}\rightarrow {\mathbb {C}}\) defined by

$$\begin{aligned} V_gf(x,\xi ):=\int _{\mathbb {R}}e^{-iy\xi } f(y)\overline{g(y-x)}\,dy=\langle {f}{e^{i\xi (\cdot )}g(\cdot -x)}\rangle , \end{aligned}$$
(19)

where the duality bracket extends the usual scalar product in \(L^2({\mathbb {R}})\). We shall only need that \(V_g\) maps \({\mathscr {S}}({\mathbb {R}})\) to rapidly decreasing functions.

Lemma A.1

For \(g\in {\mathscr {S}}({\mathbb {R}}){\setminus }\{0\}\) and \(f\in {\mathscr {S}}({\mathbb {R}})\) the function

$$\begin{aligned} (x,\xi )\mapsto \langle x \rangle ^k\langle \xi \rangle ^l V_gf(x,\xi ) \end{aligned}$$

is bounded on \({\mathbb {R}}\times {\mathbb {R}}\) for all \(k,l>0\).

This is well-known but we reprove it here for convenience.

Proof

We have

$$\begin{aligned} |V_gf(x,\xi )|\le \int _{\mathbb {R}}|f(y)||g(y-x)|\,dy =|f|*|\sigma g|(x), \end{aligned}$$

where \(\sigma g(y)=g(-y)\). By \(f,g\in {\mathscr {S}}({\mathbb {R}})\) we infer that \(\langle x \rangle ^k V_gf(x,\xi )\) is bounded for any \(k>0\). For any \(l\in {\mathbb {N}}\) we use integration by parts to obtain

$$\begin{aligned} (-i\xi )^l V_gf(x,\xi )= & {} (-1)^l\int _{\mathbb {R}}e^{-iy\xi }\frac{d^l}{dy^l}\big (f(y)\overline{g(y-x)}\big )\,dy\\= & {} (-1)^l \sum _{j=0}^l {l\atopwithdelims ()j} V_{g^{(l-j)}}\big (f^{(j)}\big )(x,\xi ). \end{aligned}$$

Since \({\mathscr {S}}({\mathbb {R}})\) is invariant under taking derivatives we can combine both arguments to obtain the assertion.\(\square \)

For the following result on \(\tau _X\)-Riemann type integrals we suppose that Assumption 4.1 holds.

Proposition A.2

Let \(f:[a,b]\rightarrow X\) be a \(\tau _X\)-continuous and norm-bounded function and let \(\mu \in {\mathscr {M}}({\mathbb {R}})\) be a complex Borel measure. For any partition \(a=t_0<t_1<\ldots <t_n=b\) and any vector \((\xi _1,\ldots ,\xi _n)\) with \(\xi _j\in [t_{j-1},t_j)\) we define the Riemann type sum

$$\begin{aligned} S(f, t_j,\xi _j):=\sum _{j=1}^n f(\xi _j)\mu \big ([t_{j-1},t_j)\big ) + f(b)\mu \big (\{b\}\big ). \end{aligned}$$

Then the \(\tau _X\)-limit of \(S(f,t_j,\xi _j)\) exists in X as \(\max _j|t_j-t_{j-1}|\) tends to 0. This limit is denoted \(\int _{[a,b]} f(t)\,d\mu (t)\). We have the estimate

$$\begin{aligned} \left\| \int _{[a,b]} f(t)\,d\mu (t)\right\| _{X}\le \sup _{t\in [a,b]}\Vert f(t)\Vert _{X} \,|\mu |([a,b]) \end{aligned}$$

and for any \(\tau _X\)-continuous seminorm p we have

$$\begin{aligned} p \left( \int _{[a,b]} f(t)\,d\mu (t)\right) \le \int _{[a,b]}p\big (f(t)\big )\,d|\mu |(t) \le \sup _{t\in [a,b]}p\big (f(t)\big ) \,|\mu |([a,b]). \end{aligned}$$

Proof

If \(\Vert f(t)\Vert _{X}\le C\) we easily get

$$\begin{aligned} \Vert S(f,t_j,\xi _j)\Vert _{X}\le C|\mu |\big ([a,b]\big ). \end{aligned}$$

By Assumption 4.1 (i) it thus suffices to show the Cauchy property. So we let \(\delta >0\) and take two partitions \((t_j)\) and \((s_k)\) such that \(\max _j|t_j-t_{j-1}|\) and \(\max _k|s_k-s_{k-1}|\) are \(\le \delta \) and we take two corresponding vectors \((\xi _j)\) and \((\eta _k)\). Then we rewrite

$$\begin{aligned} S(f,t_j,\xi _j)-S(f,s_k,\eta _k)=\sum _{l} \big (f(\widetilde{\xi }_l)-f(\widetilde{\eta }_l)\big )\mu \big ([u_l,u_{l-1})\big ), \end{aligned}$$

where \((u_l)\) is a partition obtained by the union of the \(t_j\) and the \(s_k\) and we have \(\{\widetilde{\xi }_l\}=\{\xi _j\}\), \(\{\widetilde{\eta }_l\}=\{\eta _k\}\) as sets, but we have to repeat \(\xi _j\) according to the splitting of the interval \([t_{j-1},t_j)\). Then not necessarily \(\widetilde{\xi }_l\in [u_{l-1},u_l)\) but we have at least \(|\widetilde{\xi }_l-u_l|\le \delta \) and \(|\widetilde{\xi }_l-u_{l-1}|\le \delta \). The same holds for the \(\widetilde{\eta }_l\) so that \(|\widetilde{\xi }_l-\widetilde{\eta }_l|\le 2\delta \). Taking a \(\tau _X\)-continuous seminorm p we thus have

$$\begin{aligned} p\big (S(f,t_j,\xi _j)-S(f,s_k,\eta _k)\big )\le & {} \sum _l p\big (f(\widetilde{\xi }_l)-f(\widetilde{\eta }_l)\big )|\mu |\big ([u_{l-1},u_l)\big )\\\le & {} \sup _{|\xi -\eta |\le 2\delta } p\big (f(\xi )-f(\eta )\big ) |\mu |\big ([a,b)\big ). \end{aligned}$$

The assertion thus follows from uniform \(\tau _X\)-continuity of f on [ab]. The p-estimates are immediate, for the norm estimate we use Assumption 4.1 (iii) and the p-estimates for \(p:=|\left\langle \cdot ,\psi \right\rangle |\) where \(\psi \in \Phi (\tau _X)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunstmann, P.C. Modulation type spaces for generators of polynomially bounded groups and Schrödinger equations. Semigroup Forum 98, 645–668 (2019). https://doi.org/10.1007/s00233-019-10016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-019-10016-1

Keywords

Navigation