Skip to main content
Log in

An abstract characterization of Thompson’s group F

  • Research Article
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

We show that Thompson’s group F is the symmetry group of the ‘generic idempotent’. That is, take the monoidal category freely generated by an object A and an isomorphism A AA; then F is the group of automorphisms of A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bénabou, J.: Introduction to bicategories. In: Bénabou, J., et al. (ed.) Reports of the Midwest Category Seminar. Lecture Notes in Mathematics, vol. 47. Springer, Berlin (1967)

    Chapter  Google Scholar 

  2. Belk, J.: Thompson’s Group F. Ph.D. Thesis, Cornell University (2004)

  3. Brin, M.: The algebra of strand splitting I. A braided version of Thompson’s group V. J. Group Theory 10, 757–788 (2007). arXiv:math.GR/0406042

    Article  MATH  MathSciNet  Google Scholar 

  4. Brin, M.: Coherence of associativity in categories with multiplication. J. Pure Appl. Algebra 198, 57–65 (2005). arXiv:math.CT/0501086

    Article  MATH  MathSciNet  Google Scholar 

  5. Brown, K.S.: Finiteness properties of groups. J. Pure Appl. Algebra 44, 45–75 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cannon, J.W., Floyd, W.J., Parry, W.R.: Introductory notes on Richard Thompson’s groups. Enseign. Math. 42, 215–256 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Dehornoy, P.: The structure group for the associativity identity. J. Pure Appl. Algebra 111, 59–82 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dehornoy, P.: Geometric presentations for Thompson’s groups. J. Pure Appl. Algebra 203, 1–44 (2005). arXiv:math.GR/0407096

    Article  MATH  MathSciNet  Google Scholar 

  9. Dijkgraaf, R.: A geometrical approach to two dimensional conformal field theory. Ph.D. Thesis, University of Utrecht (1989)

  10. Fiore, M., Leinster, T.: A simple description of Thompson’s group F (2005). arXiv:math.GR/0508617

  11. Freyd, P., Heller, A.: Splitting homotopy idempotents II. J. Pure Appl. Algebra 89, 93–106 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guba, V., Sapir, M.: Diagram groups. Mem. AMS 130(620), 1–117 (1997)

    MathSciNet  Google Scholar 

  13. Higman, G.: Finitely Presented Infinite Simple Groups. Notes on Pure Mathematics, vol. 8. The Australian National University, Canberra (1974)

    Google Scholar 

  14. Jónsson, B., Tarski, A.: On two properties of free algebras. Math. Scand. 9, 95–101 (1961)

    MATH  MathSciNet  Google Scholar 

  15. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kock, J.: Frobenius Algebras and 2D Topological Quantum Field Theories. London Mathematical Society Student Texts, vol. 59. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  17. Lambek, J.: Deductive systems and categories II: standard constructions and closed categories. In: Hilton, P. (ed.) Category Theory, Homology Theory and Their Applications, I. Lecture Notes in Mathematics, vol. 86. Springer, Berlin (1969)

    Chapter  Google Scholar 

  18. Lawson, M.: A correspondence between balanced varieties and inverse monoids. Int. J. Algebra Comput. 16, 887–924 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lawson, M.: A class of subgroups of Thompson’s group V. Semigroup Forum 75, 241–252 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lawvere, F.W.: Ordinal sums and equational doctrines. In: Seminar on Triples and Categorical Homology Theory, ETH, Zürich, 1966/67. Lecture Notes in Mathematics, vol. 80. Springer, Berlin (1969)

    Chapter  Google Scholar 

  21. Leinster, T.: Higher Operads, Higher Categories. London Mathematical Society Lecture Note Series, vol. 298. Cambridge University Press, Cambridge (2004). arXiv:math.CT/0305049

    MATH  Google Scholar 

  22. Lane, S.M.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer, Berlin (1998), revised edition

    MATH  Google Scholar 

  23. Markl, M., Shnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, vol. 96. AMS, Providence (2002)

    MATH  Google Scholar 

  24. May, J.P.: The Geometry of Iterated Loop Spaces. Lectures Notes in Mathematics, vol. 271. Springer, Berlin (1972)

    MATH  Google Scholar 

  25. McKenzie, R., Thompson, R.: An elementary construction of unsolvable word problems in group theory. In: Boone, W.W., Cannonito, F.B., Lyndon, R.C. (eds.) Word Problems. Studies in Logic and the Foundation of Mathematics, vol. 71. North-Holland, Amsterdam (1973)

    Google Scholar 

  26. Paré, R.: Simply connected limits. Can. J. Math. 42, 731–746 (1990)

    MATH  Google Scholar 

  27. Paré, R.: Universal covering categories. Rend. Ist. Mat. Univ. Trieste 25, 391–411 (1993)

    MATH  Google Scholar 

  28. Segal, G.: Classifying spaces and spectral sequences. Inst. Hautes Etud. Sci. Publ. Math. 34, 105–112 (1968)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Leinster.

Additional information

Communicated by Michael W. Mislove.

M. Fiore partially supported by an EPSRC Advanced Research Fellowship.

T. Leinster partially supported by a Nuffield Foundation award NUF-NAL 04 and an EPSRC Advanced Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiore, M., Leinster, T. An abstract characterization of Thompson’s group F . Semigroup Forum 80, 325–340 (2010). https://doi.org/10.1007/s00233-010-9209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-010-9209-2

Keywords

Navigation