Skip to main content
Log in

Measuring Membrane Penetration Depths and Conformational Changes in Membrane Peptides and Proteins

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The structural organization and dynamic nature of the biomembrane components are important determinants for numerous cellular functions. Particularly, membrane proteins are critically important for various physiological functions and are important drug targets. The mechanistic insights on the complex functionality of membrane lipids and proteins can be elucidated by understanding the interplay between structure and dynamics. In this regard, membrane penetration depth represents an important parameter to obtain the precise depth of membrane-embedded molecules that often define the conformation and topology of membrane probes and proteins. In this review, we discuss about the widely used fluorescence quenching-based methods (parallax method, distribution analysis, and dual-quencher analysis) to accurately determine the membrane penetration depths of fluorescent probes that are either membrane-embedded or attached to lipids and proteins. Further, we also discuss a relatively novel fluorescence quenching method that utilizes tryptophan residue as the quencher, namely the tryptophan-induced quenching, which is sensitive to monitor small-scale conformational changes (short distances of < 15 Å) and useful in mapping distances in proteins. We have provided numerous examples for the benefit of readers to appreciate the importance and applicability of these simple yet powerful methods to study membrane proteins.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

adapted from Caputo and London 2003a. See text for details

Fig. 6

Adapted from Mansoor et al. 2010. See text for more information

Similar content being viewed by others

References

  • Abrami L, van der Goot FG (1999) Plasma membrane microdomains act as concentration platforms to facilitate intoxication by aerolysin. J Cell Biol 147:175–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Abrams FS, London E (1993) Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry 32:10826–10831

    Article  CAS  PubMed  Google Scholar 

  • Aksnes H, van Damme P, Goris M, Starheim KK, Marie M, Stove SI, Hoel C, Kalvik TV, Hole K, Glomnes N, Furnes C, Ljostveit S, Ziegler M, Niere M, Gevaert K, Arnesen T (2015) An organellar Nα-acetyltransferase, Naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity. Cell Rep 10:1362–1374

    Article  CAS  PubMed  Google Scholar 

  • Aksnes H, Goris M, Stromland O, Drazic A, Waheed Q, Reuter N, Arnesen T (2017) Molecular determinants of the N-terminal acyltransferase Naa60 anchoring to the Golgi membrane. J Biol Chem 292:6821–6837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bakheet TM, Doig AJ (2009) Properties and identification of human protein drug targets. Bioinformatics 25:451–457

    Article  CAS  PubMed  Google Scholar 

  • Bradberry MM, Bao H, Lou X, Chapman ER (2019) Phosphatidylinositol 4,5-bisphosphate drives Ca2+-independent membrane penetration by the tandem C2 domain proteins synaptotagmin-1 and Doc2β. J Biol Chem 294:10942–10953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biswas G, Ghosh S, Raghuraman H, Banerjee R (2020) Probing conformational transitions of PIN1 from L. major during chemical and thermal denaturation. Int J Biol Macromol 154:904–915

    Article  CAS  PubMed  Google Scholar 

  • Bohuszewicz O, Low HH (2018) Structure of a mitochondrial fission dynamin in the closed conformation. Nat Struct Mol Biol 25:722–731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bolen EJ, Holloway PW (1990) Quenching of tryptophan fluorescence by brominated phospholipid. Biochemistry 29:9638–9643

    Article  CAS  PubMed  Google Scholar 

  • Brahma R, Raghuraman H (2021) Novel insights in linking solvent relaxation dynamics and protein conformations utilizing red edge excitation shift approach. Emerg Top Life Sci 5:89–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brahma R, Das A, Raghuraman H (2022) Site-directed fluorescence approaches to monitor the structural dynamics of proteins using intrinsic Trp and labeled with extrinsic fluorophores. STAR Protocols 3:101200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breukink E, van Kraaij C, van Dalen A, Demel RA, Siezen RJ, de Kruijff B, Kuipers OP (1998) The orientation of nisin in membranes. Biochemistry 37:8153–8162

    Article  CAS  PubMed  Google Scholar 

  • Brunette AMJ, Farrens DL (2014) Distance mapping in proteins using fluorescence spectroscopy: tyrosine, like tryptophan, quenches bimane fluorescence in a distance-dependent manner. Biochemistry 53:6290–6301

    Article  Google Scholar 

  • Bull SC, Doig AJ (2015) Properties of protein drug target classes. PLoS ONE 10:e0117955

    Article  PubMed Central  PubMed  Google Scholar 

  • Callis PR (2014) Binding phenomena and fluorescence quenching: II: photophysics of aromatic residues and dependence of fluorescence spectra on protein conformation. J Mol Struct 1077:22–29

    Article  CAS  Google Scholar 

  • Caputo GA, London E (2003a) Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid bilayers to determine hydrophobic α-helix locations within membranes. Biochemistry 42:3265–3274

    Article  CAS  PubMed  Google Scholar 

  • Caputo GA, London E (2003b) Cumulative effects of amino acid substitutions and hydrophobic mismatch upon the transmembrane stability and conformation of hydrophobic α-helices. Biochemistry 42:3275–3285

    Article  CAS  PubMed  Google Scholar 

  • Caputo GA, London E (2019) Analyzing transmembrane protein and hydrophobic helix topography by dual fluorescence quenching. In: Kleinschmidt JH (ed) Lipid-protein interactions: methods and protocols, methods in molecular biology, vol 2003. Springer, New York, pp 351–368

    Chapter  Google Scholar 

  • Carpenter EP, Beis K, Cameron AD, Iwata S (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18:581–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaplin DB, Kleinfeld AM (1983) Interaction of fluorescence quenchers with the n-(9-anthroyloxy) fatty acid membrane probes. Biochim Biophys Acta 731:465–474

    Article  Google Scholar 

  • Chatterjee A, Caballero-Franco C, Bakker D, Totten S, Jardim A (2015) Pore-forming activity of the Escherichia coli type III secretion system protein espD. J Biol Chem 290:25579–25594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chatterjee S, Das A, Raghuraman H (2019) Biochemical and biophysical characterization of a prokaryotic Mg2+ ion channel: implications for cost-effective purification of membrane proteins. Protein Expr Purif 161:8–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chatterjee S, Brahma R, Raghuraman H (2021) Gating-related structural dynamics of the MgtE magnesium channel in membrane-mimetics utilizing site-directed tryptophan fluorescence. J Mol Biol 433:66691

    Article  Google Scholar 

  • Chattopadhyay A, London E (1987) Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26:39–45

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay A, McNamee MG (1991) Average membrane penetration depth of tryptophan residues of the acetylcholine receptor by the parallax method. Biochemistry 30:7159–7164

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay A, Rawat SS, Greathouse DV, Kelkar DA, Koeppe RE (2008) Role of tryptophan residues in gramicidin channel organization and function. Biophys J 95:166–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chattopadhyay A, Biswas SC, Rukmini R, Saha S, Samanta A (2021) Lack of environmental sensitivity of a naturally occurring fluorescent analog of cholesterol. J Fluoresc 31:1401–1407

    Article  CAS  PubMed  Google Scholar 

  • Cheng C-Y, Song J, Pas J, Meijer LHH, Han S (2015) DMSO induces dehydration near lipid membrane surfaces. Biophys J 109:330–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho H, Stanzione F, Oak A, Kim GH, Yerneni S, Qi L, Sum AK, Chan C (2019) Intrinsic structural features of the human IREα1 transmembrane domain sense membrane lipid saturation. Cell Rep 27:307–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Das A, Raghuraman H (2021) Conformational heterogeneity of the voltage sensor loop of KvAP in micelles and membranes: a fluorescence approach. Biochim Biophys Acta Biomembr 1863:183568

    Article  CAS  PubMed  Google Scholar 

  • Das A, Chatterjee S, Raghuraman H (2020) Structural dynamics of the paddle motif loop in the activated conformation of KvAP voltage sensor. Biophys J 118:873–884

    Article  CAS  PubMed  Google Scholar 

  • Das A, Bysack A, Raghuraman H (2021) Effectiveness of dual-detergent strategy using Triton X-100 in membrane protein purification. Biochem Biophys Res Commun 578:122–128

    Article  CAS  PubMed  Google Scholar 

  • de Geronimo E, Sawicki LR, Arias NB, Franchini GR, Zamarreno F, Costabel MD, Corscico B, Lockhart LJF (2014) IFABP portal region insertion during membrane interaction depends on phospholipid composition. Biochim Biophys Acta 1841:141–150

    Article  PubMed  Google Scholar 

  • Devi L, Raghavendran V, Prabhu B, Avadhani N (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283:9089–9100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diaz-Garcia C, Renart ML, Poveda JA, Giudici AM, Gonzalez-Ros JM, Prieto M, Coutinho A (2021) Probing the structural dynamics of the activation gate of KcsA using homo-FRET measurements. Int J Mol Sci 22:11954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doose S, Neuweiler H, Sauer M (2009) Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. Chem Phys Chem 10:1389–1398

    Article  CAS  PubMed  Google Scholar 

  • Eftink MR (1991) Fluorescence techniques for studying protein structure. Methods Biochem Anal 35:127–205

    CAS  PubMed  Google Scholar 

  • Eftink MR, Ghiron CA (1976) Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry 15:672–680

    Article  CAS  PubMed  Google Scholar 

  • Fagerberg L, Jonasson K, von Heijne G, Uhlen M, Berglund L (2010) Prediction of the human membrane proteome. Proteomics 10:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Gable JE, Schlamadinger DE, Cogen AL, Gallo RL, Kim JE (2009) Fluorescence and UV resonance raman study of peptide-vescicle interactions of human cathelicidin LL-37 and its F6W and F17W mutants. Biochemistry 48:11264–11272

    Article  CAS  PubMed  Google Scholar 

  • Ghosh AK, Rukmini R, Chattopadhyay A (1997) Modulation of tryptophan environment in membrane-bound melittin by negatively-charged phospholipids: implications in membrane organization and function. Biochemistry 36:14291–14305

    Article  CAS  PubMed  Google Scholar 

  • Gnanasambandam R, Ghatak C, Yasmann A, Kazuhisa N, Sachs F, Ladokhin AS, Sukharev SI, Suchyna TM (2017) GsMTx4: mechanism of inhibiting mechanosensitive ion channels. Biophys J 112:31–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haldar S, Raghuraman H, Chattopadhyay A (2008) Monitoring orientation and dynamics of membrane-bound melittin utilizing dansyl fluorescence. J Phys Chem B 112:14075–14082

    Article  CAS  PubMed  Google Scholar 

  • Haldar S, Chaudhuri A, Gu H, Koeppe RE, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2012) Membrane organization and dynamics of ‘inner pair” and “outer pair” of tryptophan residues in gramicidin channels. J Phys Chem B 116:11056–11064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrington JM, Scelsi C, Hartel A, Jones NG, Engstler M, Capewell P, Macleod A, Hajduk S (2012) Novel African trypanocidal agents: membrane rigidifying peptides. PLoS ONE 7:e44384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashibara M, London E (2005) Topography of diptheria toxin A chain inserted into lipid vesicles. Biochemistry 44:2183–2196

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson WA (2016) Atomic-level analysis of membrane-protein structure. Nat Struct Mol Biol 23:464–467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hitchner MA, Santiago-Ortiz LE, Necelis MR, Shirley DJ, Palmer TJ, Tarnawsky K, Vaden TD, Caputo GA (2019) Activity and characterization of a pH-sensitive antimicrobial peptide. Biochim Biophys Acta Biomembr 1861:182984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ho D, Lugo MR, Merrill AR (2013) Harmonic analysis of the fluorescence response of bimane adducts of colicin E1 at helices 6,7, and 10. J Biol Chem 288:5136–5148

    Article  CAS  PubMed  Google Scholar 

  • Islas LD, Zagotta WN (2006) Short-range molecular rearrangements in ion channels detected by tryptophan quenching of bimane fluorescence. J Gen Physiol 128:337–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Janz JM, Farrens DL (2004) Rhodopsin activation exposes a key hydrophobic binding site for the transducin α-subunit C terminus. J Biol Chem 279:29767–29773

    Article  CAS  PubMed  Google Scholar 

  • Jobin M-L, Blanchet M, Henry S, Chaignepain S, Manigand C, Castano S, Lecomte S, Burlina F, Sagan S, Alves ID (2015) The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Biochim Biophs Acta 1848:593–602

    Article  CAS  Google Scholar 

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung HH, Jung HJ, Milescu M, Lee CW, Lee S, Lee JY, Eu Y-J, Kim HH, Swartz KJ, Kim JI (2010) Structure and orientation of a voltage-sensor toxin in lipid membranes. Biophys J 99:638–646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaiser RD, London E (1998a) Determination of the depth of BODIPY probes in model membranes by parallax analysis of fluorescence quenching. Biochim Biophys Acta 1375:13–22

    Article  CAS  PubMed  Google Scholar 

  • Kaiser RD, London E (1998b) Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Biochemistry 37:8180–8190

    Article  CAS  PubMed  Google Scholar 

  • Kavarnos GJ (1990) Fundamental concepts of photoinduced electron transfer. Topics Curr Chem 156:21–58

    Article  CAS  Google Scholar 

  • Kelkar DA, Chattopadhyay A (2006) Monitoring ion channel conformations in membranes utilizing a novel dual fluorescence quenching approach. Biochem Biophys Res Commun 343:483–488

    Article  CAS  PubMed  Google Scholar 

  • Kozachkov L, Padan E (2011) Site-directed tryptophan fluorescence reveals two essential conformational changes in the Na+/H+ antiporter NhaA. Proc Natl Acad Sci USA 108:15769–15774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kyrychenko A, Ladokhin AS (2013) Molecular dynamics simulations of depth distribution of spin-labeled phhospholipids within lipid bilayer. J Phys Chem B 117:5875–5885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kyrychenko A, Ladokhin AS (2020) Location of TEMPO-PC in lipid bilayers: implications for fluorescence quenching. J Membr Biol 253:73–77

    Article  CAS  PubMed  Google Scholar 

  • Kyrychenko A, Rodnin MV, Ladokhin AS (2015) Calibration of distribution analysis of the depth of membrane penetration using simulations and depth-dependent fluorescence quenching. J Membr Biol 248:583–594

    Article  CAS  PubMed  Google Scholar 

  • Kyrychenko A, Lim NM, Vasquez-Montes V, Rodnin MV, Freitas JA, Nguyen LP, Tobias DJ, Mobley DL, Ladokhin AS (2018) Refining protein penetration into the lipid bilayer using fluorescence quenching and molecular dynamics simulations: the case of diphtheria toxin translocation domain. J Membr Biol 251:379–391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kyrychenko A, Vasquez-Montes V, Ladokhin AS (2022) Advantages of quantitative analysis of depth-dependent fluorescence quenching: case study of BAX. J Membr Biol. https://doi.org/10.1007/s00232-021-00211-z

    Article  PubMed  Google Scholar 

  • Ladokhin AS (1997) Distribution analysis of depth-dependent fluorescence quenching in membranes: a practical guide. Methods Enzymol 278:462–473

    Article  CAS  PubMed  Google Scholar 

  • Ladokhin AS (2014) Measuring membrane penetration with depth-dependent fluorescence quenching: distribution analysis coming of age. Biochim Biophys Acta 1838:2289–2295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ladokhin AS, Holloway PW (1995) Fluorescence of membrane-bound tryptophan octyl ester: a model for studying intrinsic fluorescence of protein-membrane interactions. Biophys J 69:506–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ladokhin AS, Holloway PW, Kostrzhevska EG (1993) Distribution analysis of membrane penetration of proteins by depth-dependent fluorescence quenching. J Fluoresc 3:195–197

    Article  CAS  PubMed  Google Scholar 

  • Ladokhin AS, Kyrychenko A, Rodnin MV, Vasquez-Montes V (2021) Conformational switching, folding and membrane insertion of the diphtheria toxin translocation domain. Methods Enzymol 649:341–370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lai B, Zhao G, London E (2008) Behavior of the deeply inserted helices in diptheria toxin T domain: helices 5,8 and 9 interact strongly and promote pore formation, while helices 6/7 limit pore formation. Biochemistry 47:4565–4574

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Pincus PA, Hyeon C (2016) Effects of dimethyl sulfoxide on surface water near phospholipid bilayers. Biophys J 111:2481–2491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM (2021) Highlighting membrane protein structure and function: a celebration of the Protein Data Bank. J Biol Chem 296:100557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu M, Yu X, Li M, Liao N, Bi A, Jiang Y, Liu S, Gong Z, Zeng W (2018) Fluorescent probes for the detection of magnesium ions (Mg2+): from design to application. RSC Adv 8:12573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • London E, Ladokhin AS (2002) Measuring the depth of amino acid residues in membrane-inserted peptides by fluorescence quenching. In: Benos D, Simons S (eds) Current topics in membranes. Elsevier, San Diego, pp 89–115

    Google Scholar 

  • Maier O, Wiethoff CM (2010) N-terminal α-helix-independent membrane interactions facilitate adenovirus protein VI induction of membrane tubule formation. Virology 408:31–38

    Article  CAS  PubMed  Google Scholar 

  • Maier O, Galan DL, Wodrich H, Weithoff CM (2010) An N-terminal domain of adenovirus protein VI fragments membranes by inducing positive membrane curvature. Virology 402:11–19

    Article  CAS  PubMed  Google Scholar 

  • Mansoor SE, Farrens DL (2004) High-throughput protein structural analysis using site-directed fluorescence labeling and the bimane derivative (2-pyridyl)dithiobimane. Biochemistry 43:9426–9438

    Article  CAS  PubMed  Google Scholar 

  • Mansoor SE, McHaourab HS, Farrens DL (2002) Mapping proximity within proteins using fluorescence spectroscopy. A study of T4 lysozyme showing that tryptophan residues quench bimane fluorescence. Biochemistry 41:2475–2484

    Article  CAS  PubMed  Google Scholar 

  • Mansoor SE, DeWitt MA, Farrens DL (2010) Distance mapping in proteins using fluorescence spectroscopy: the tryptopan-induced quenching (TrIQ) method. Biochemistry 49:9722–9731

    Article  CAS  PubMed  Google Scholar 

  • Marino SM, Gladyshev VN (2016) Analysis and functional prediction of reactive cysteine residues. J Biol Chem 287:4419–4425

    Article  Google Scholar 

  • Martyna A, Bahsoun B, Madsen JF, Badham MD, Voth GA, Rossman JS (2020) Cholesterol alters the orientation and activity of the influenza virus M2 amphipathic helix in the membrane. J Phys Chem B 124:6738–6747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mihailescu M, Krepkiy D, Milescu M, Gawrisch K, Swartz KJ, White S (2014) Structural interactions of a voltage sensor toxin with lipid membranes. Proc Natl Acad Sci USA 111:E5463–E5470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moraes I, Evans G, Sanchez-Weatherby J, Newstead S, Stewart PDS (2014) Membrane protein structure determination-the next generation. Biochim Biophys Acta 1838:78–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moro F, Goni FM, Urbaneja MA (1993) Fluorescence quenching at interfaces and the permeation of acrylamide and iodide across phospholipid bilayers. FEBS Lett 330:129–132

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Raghuraman H, Dasgupta S, Chattopadhyay A (2004) Organization and dynamics of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: a fluorescence approach. Chem Phys Lipids 127:91–101

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Raghuraman H, Chattopadhyay A (2007) Membrane localization and dynamics of Nile Red: effect of cholesterol. Biochim Biophys Acta 1768:59–66

    Article  CAS  PubMed  Google Scholar 

  • Musse AA, Wang J, Deleon GP, Prentice GA, London E, Merrill AR (2006) Scanning the membrane-bound conformation of helix 1 in the colicin E1 channel domain by site-directed fluorescence labeling. J Biol Chem 281:885–895

    Article  CAS  PubMed  Google Scholar 

  • Pantazis A, Westerberg K, Althoff T, Abramson J, Olcese R (2018) Harnessing photoinduced electron transfer to optically determine protein sub-nanoscale atomic distances. Nat Commun 9:4738

    Article  PubMed Central  PubMed  Google Scholar 

  • Pezeshkian W, Gao H, Arumugam S, Becken U, Bassereau P, Florent J-C, Ipsen J, Johannes L, Shillcock JC (2017) Mechanism of shiga toxin clustering on membranes. ACS Nano 11:314–324

    Article  CAS  PubMed  Google Scholar 

  • Phillips LR, Milescu M, Li-Smerin Y, Mindell JA, Kim JI, Swartz KJ (2005) Voltage-sensor activation with a tarantula toxin as cargo. Nature 436:857–860

    Article  CAS  PubMed  Google Scholar 

  • Raghuraman H, Chattopadhyay A (2004a) Interaction of melittin with membrane cholesterol: a fluorescence approach. Biophys J 87:2419–2432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raghuraman H, Chattopadhyay A (2004b) Effect of micellar charge on the conformation and dynamics of melittin. Eur Biophys J 33:611–622

    Article  CAS  PubMed  Google Scholar 

  • Raghuraman H, Chattopadhyay A (2005) Cholesterol inhibits the lytic activity of melittin in erythrocytes. Chem Phys Lipids 134:183–189

    Article  CAS  PubMed  Google Scholar 

  • Raghuraman H, Chattopadhyay A (2006) Effect of ionic strength on folding and aggregation of the hemolytic peptide melittin in solution. Biopolymers 83:111–121

    Article  CAS  PubMed  Google Scholar 

  • Raghuraman H, Chattopadhyay A (2007a) Melittin: a membrane-active peptide with diverse functions. Biosci Rep 27:189–223

    Article  CAS  PubMed  Google Scholar 

  • Raghuraman H, Chattopadhyay A (2007b) Orientation and dynamics of melittin in membranes of varying composition utilizing NBD fluorescence. Biophys J 92:1271–1283

    Article  CAS  PubMed  Google Scholar 

  • Raghuraman H, Kelkar DA, Chattopadhyay A (2005) Novel insights into protein structure and dynamics utilizing the red edge excitation shift approach. In: Geddes CD, Lakowicz JR (eds) Reviews in fluorescence. Springer, New York, pp 199–214

    Google Scholar 

  • Raghuraman H, Shrivastava S, Chattopadhyay A (2007) Monitoring the looping up of acyl chain labeled NBD lipids in membranes as a function of membrane phase state. Biochim Biophys Acta 1768:1258–1267

    Article  CAS  PubMed  Google Scholar 

  • Raghuraman H, Cordero-Morales JF, Jogini V, Pan AC, Kollewe A, Roux B, Perozo E (2012) Mechanism of Cd2+ coordination during slow inactivation in potassium channels. Structure 20:1332–1342

    Article  CAS  PubMed  Google Scholar 

  • Raghuraman H, Islam SM, Mukherjee S, Roux B, Perozo E (2014) Dynamics transitions at the outer vestibule of the KcsA potassium channel during gating. Proc Natl Acad Sci USA 111:1831–1836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raghuraman H, Chatterjee S, Das A (2019) Site-directed fluorescence approaches for dynamic structural biology of membrane peptides and proteins. Front Mol Biosci 6:96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rawat SS, Kelkar DA, Chattopadhyay A (2004) Monitoring gramicidin conformations in membranes: a fluorescence approach. Biophys J 87:831–843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rao BD, Chakraborty H, Chaudhuri A, Chattopadhyay A (2020) Differential sensitivity of pHLIP to ester and ether lipids. Chem Phys Lipids 226:104849

    Article  PubMed  Google Scholar 

  • Ren J, Lew S, Wang Z, London E (1997) Transmembrane orientation of hydrophobic a-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Biochemistry 36:10213–10220

    Article  CAS  PubMed  Google Scholar 

  • Renart ML, Giudici AM, Poveda JA, Fedorov A, Berberan-Santos MN, Prieto M, Diaz-Garcia C, Gonzalez-Ros JM, Coutinho A (2019) Conformational plasticity in the KcsA potassium channel pore helix revealed by homo-FRET studies. Sci Rep 9:6215

    Article  PubMed Central  PubMed  Google Scholar 

  • Sahu ID, Lorigan GA (2018) Site-directed spin labeling EPR for studying membrane proteins. Biomed Res Int 2018:3248289

    Article  PubMed Central  PubMed  Google Scholar 

  • Saxena R, Shrivastava S, Haldar S, Klymchenko AS, Chattopadhyay A (2014) Location, dynamics and solvent relaxation of a Nile Red-based phase-sensitive fluorescent membrane probe. Chem Phys Lipids 183:1–8

    Article  CAS  PubMed  Google Scholar 

  • Schrader AM, Han S (2017) Location of the TEMPO moiety of TEMPO-PC in lipid bilayers. Biophys J 113:966–969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Semenova NP, Abarca-Heidemann K, Loranc E, Rothberg BS (2009) Bimane fluorescence scanning suggests secondary structure near the S3–S4 linker of BK channels. J Biol Chem 284:10684–10693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serrao VHB, Cook JD, Lee JE (2021) Snapshot of an influenza virus glycoprotein fusion intermediate. Cell Rep 35:109152

    Article  CAS  PubMed  Google Scholar 

  • Sood R, Domanov Y, Pietiainen M, Kontinen VP, Kinnunen PKJ (2008) Binding of LL-37 to model biomembranes: Insight into target vs host cell recognition. Biochim Biophys Acta 1778:983–996

    Article  CAS  PubMed  Google Scholar 

  • Suades A, Alcaraz A, Cruz E, Alvarez-Marimon E, Whitelegge JP, Manyosa J, Cladera J, Peralvarez-Marin A (2019) Structural biology workflow for the expression and characterization of functional human sodium glucose transporter type 1 in Pichia pastoris. Sci Rep 9:1203

    Article  PubMed Central  PubMed  Google Scholar 

  • Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, Baumgarten CM, Sachs F (2000) Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 115:583–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suchyna TM, Tape SE, Koeppe RE II, Anderson OS, Sachs F, Gottlieb PA (2004) Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature 430:235–240

    Article  CAS  PubMed  Google Scholar 

  • Swartz KJ (2007) Tarantula toxins interacting with voltage sensors in potassium channels. Toxicon 49:213–230

  • Swartz D, Singh A, Sok N, Thomas JN, Weber J, Urbatsch IL (2020) Replacing the eleven native tryptophans by directed evolution produces an active P-glycoprotein with site-specific, non-conservative substitutions. Sci Rep 10:3224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang Y, Romano FB, Brena M, Heuck AP (2018) The Psedumonas aeruginosa type III secretion translocator PopB assists the insertion of the PopD translocator into host cell membranes. J Biol Chem 293:8982–8993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terstappen GC, Reggiani A (2001) In silico research in drug discovery. Trends Pharmacol Sci 22:23–26

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto H, Farrens DL (2013) A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor. J Biol Chem 288:28207–28216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsukamoto H, Farrens DL, Koyanagi M, Terakita A (2009) The magnitude of the light-induced conformational change in different rhodopsins correlates with their ability to activate G proteins. J Biol Chem 284:20676–20683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tyagi NK, Kumar A, Goyal P, Pandey D, Siess W, Kinne RKH (2007) D-glucose-recognition and phlorizin-binding sites in human sodium/D-glucose cotransporter 1 (hSGLT1): a tryptophan scanning study. Biochemistry 46:13616–13628

    Article  CAS  PubMed  Google Scholar 

  • van Heusden HE, de Kruijff B, Breukink E (2002) Lipid II induces a transmembrane orientation of the pore-forming peptide lantibiotic nisin. Biochemistry 41:12171–12178

    Article  PubMed  Google Scholar 

  • Vidaurri EM, Chavez-Montes A, Tapia MG, Castro-Rios R, Gonzalez-Horta A (2018) Differential interaction of α-synuclein N-terminal segment with mitochondrial model membranes. Int J Biol Macromol 119:1286–1293

    Article  Google Scholar 

  • Wallin E, Heijne GV (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei VZ, White D, Wang J, Musse AA, Merrill AR (2007) Tilted, extended, and lying in wait: the membrane-bound topology of residues Lys-381–Ser-405 of the colicin E1 channel domain. Biochemistry 46:6074–6085

    Article  CAS  PubMed  Google Scholar 

  • Weitzman C, Consler TG, Kaback R (1995) Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change. Protein Sci 4:2310–2318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • White SH, Ladokhin AS, Jayasinghe S, Hristova K (2001) How membranes shape protein structure. J Biol Chem 276:P32395–P32398

    Article  Google Scholar 

  • White D, Musse AA, Wang J, London E, Merrill AR (2006) Toward elucidating the membrane topology of helix two of the colicin E1 channel domain. J Biol Chem 281:32375–32384

  • Wiedemann C, Kumar A, Lang A, Ohlenschlager O (2020) Cysteines and disulfide bonds as structure-forming units: Insights from different domains of life and the potential for characterization by NMR. Front Chem 8:280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485

    Article  PubMed Central  PubMed  Google Scholar 

  • Yao X, Parnot C, Deupi X, Ratnala VR, Swaminath G, Farrens D, Kobilka B (2006) Coupling ligand structure to specific conformational switches in the beta2-adrenoceptor. Nat Chem Biol 2:417–422

    Article  CAS  PubMed  Google Scholar 

  • Yildirim MA, Goh K-I, Cusick ME, Barabsai A-L, Vidal M (2007) Drug-target network. Nat Biotechnol 25:1119–1126

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Kinnunen PKJ (2002) Binding of the antimicrobial peptide temporin L to liposomes assessed by Trp fluorescence. J Biol Chem 277:25170–25177

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, London E (2005) Behavior of diptheria toxin T domain containing substitutions that block normal membrane insertion at Pro345 and Leu307: control of deep membrane insertion and coupling between deep insertion of hydrophobic subdomains. Biochemistry 44:4488–4498

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.B. thanks the Department of Atomic Energy, Government of India for the award of a Senior Research Fellowship. H.R. is a recipient of India Alliance DBT-Wellcome Trust Intermediate Fellowship (IA/I/17/2/503321). R.B. and H.R. thank the Department of Atomic Energy, Govt. of India for supporting this work. We thank members of our laboratory for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RB and HR contributed to preparing figures and wrote the manuscript.

Corresponding author

Correspondence to H. Raghuraman.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahma, R., Raghuraman, H. Measuring Membrane Penetration Depths and Conformational Changes in Membrane Peptides and Proteins. J Membrane Biol 255, 469–483 (2022). https://doi.org/10.1007/s00232-022-00224-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-022-00224-2

Keywords

Navigation