Skip to main content
Log in

Role of Cholesterol in Transmembrane Dimerization of the ErbB2 Growth Factor Receptor

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The association of ErbB2 growth factor receptors is critical for cell growth and potentiates tumor proliferation in several cancer types. An important aspect in ErbB2 association is the role of lipids such as cholesterol, especially since their metabolism is often reprogrammed in cancer cells. Here, we have coupled metadynamics with coarse-grain simulations to identify cholesterol effects in the transmembrane dimerization of ErbB2 receptors. Overall, cholesterol interactions are observed with the receptor that directly tunes the association energetics. Several dimer conformations are identified both in the presence and absence of cholesterol, although the dimer regime appears to be more favorable in the presence of cholesterol. We observe an overall modulation of the underlying energy profile and the symmetric active and inactive conformational states are not distinguished in the presence of cholesterol. We show that cholesterol binds to the receptor transmembrane domain at a site (CRAC motif) that overlaps with the dimer interface (SmXXXSm motif). The competition between the transmembrane interactions and cholesterol interactions decides the final conformational landscape. Our work is an important step toward characterizing cholesterol effects in ErbB2 membrane receptor function.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baier CJ, Fantini J, Barrantes FJ (2011) Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep 1:69

    PubMed  PubMed Central  Google Scholar 

  • Beevers AJ, Kukol A (2006) Systematic molecular dynamics searching in a lipid bilayer: application to the glycophorin A and oncogenic ErbB-2 transmembrane domains. J Mol Graphics Modell 25(2):226–233

    CAS  Google Scholar 

  • Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411(6835):355–365

    CAS  PubMed  Google Scholar 

  • Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, Chupin VV, Kirpichnikov MP, Efremov RG, Arseniev AS (2008) Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J Biol Chem 283(11):6950–6956

    CAS  PubMed  Google Scholar 

  • Bocharov EV, Lesovoy DM, Pavlov KV, Pustovalova YE, Bocharova OV, Arseniev AS (2016) Alternative packing of EGFR transmembrane domain suggests that protein-lipid interactions underlie signal conduction across membrane. Biochim Biophys Acta 6:1254–61

    Google Scholar 

  • Bocharov EV, Sharonov GV, Bocharova OV, Pavlov KV (2017) Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases. Biochim Biophys Acta Biomembr 9:1417–1429

    Google Scholar 

  • Bragin PE, Mineev KS, Bocharova OV, Volynsky PE, Bocharov EV, Arseniev AS (2015) HER2 transmembrane domain dimerization coupled with self-association of membrane-embedded cytoplasmic juxtamembrane regions. J Mol Biol 428(1):52–61

    PubMed  Google Scholar 

  • Bragin PE, Mineev KS, Bocharova OV, Volynsky PE, Bocharov EV, Arseniev AS (2016) Her2 transmembrane domain dimerization coupled with self-association of membrane-embedded cytoplasmic juxtamembrane regions. J Mol Biol 428:52–61

    CAS  PubMed  Google Scholar 

  • Cymer F, Veerappan A (2012) Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties. Biochim Biophys Acta Biomembr 4:963–973

    Google Scholar 

  • Dubey V, Prasanna X, Sengupta D (2017) Estimating the lipophobic contributions in model membranes. J Phys Chem B 121:2111–2120

    CAS  PubMed  Google Scholar 

  • Duneau JP, Khao J, Sturgis JN (2017) Lipid perturbation by membrane proteins and the lipophobic effect. Biochim Biophys Acta 1859:126–134

    CAS  Google Scholar 

  • Endres NF, Engel K, Das R, Kovacs E, Kuriyan J (2011) Regulation of the catalytic activity of the EGF receptor. Curr Opin Struct Biol 21(6):777–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endres NF, Das R, Smith AW, Arkhipov A, Kovacs E, Huang Y, Pelton JG, Shan Y, Shaw DE, Wemmer DE, Groves JT, Kuriyan J (2013) Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152(3):543–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Escher C, Cymer F, Schneider D (2009) Two GxxxG-like motifs facilitate promiscuous interactions of the human ErbB transmembrane domains. J Mol Biol 389(1):10–16

    CAS  PubMed  Google Scholar 

  • Fantini J, Barrantes FJ (2013) How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including crac, carc, and tilted domains. Front Physiol 4:31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finger C, Escher C, Schneider D (2009) The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci Signaling 2(89):ra56

    Google Scholar 

  • Fleishman SJ, Schlessinger J, Ben-Tal N (2002) A putative molecular-activation switch in the transmembrane domain of erbB2. Proc Natl Acad Sci USA 99(25):15937–15940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ge G, Wu J, Lin Q (2001) Effect of membrane fluidity on tyrosine kinase activity of reconstituted epidermal growth factor receptor. Biochem Biophys Res Commun 282(2):511–514

    CAS  PubMed  Google Scholar 

  • Gerber D, Sal-Man N, Shai Y (2004) Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization. J Biol Chem 279(20):21177–21182

    CAS  PubMed  Google Scholar 

  • Gopal SM, Pawar AB, Wassenaar TA, Sengupta D (2020) Lipid-dependent conformational landscape of the ErbB2 growth factor receptor dimers. Chem Phys Lipids 230:104911

    CAS  PubMed  Google Scholar 

  • Grouleff J, Irudayam SJ, Skeby KK (2015) The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim Biophys Acta Biomembr 9:1783–1795

    Google Scholar 

  • Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2. Å Structure of the human \(\beta\)2-adrenergic receptor. Structure 16(6):897–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan M, Patel D, Ellis N, Brown SP, Lewandowski JR, Dixon AM (2019) Modulation of transmembrane domain interactions in neu receptor tyrosine kinase by membrane fluidity and cholesterol. J Membr Biol 252(4–5):357–369

    CAS  PubMed  Google Scholar 

  • Hedger G (2016) Lipid interaction sites on channels, transporters and receptors: recent insights from molecular dynamics simulations. Biochim Biophys Acta Biomembr 10:2390–2400

    Google Scholar 

  • Hedger G, Shorthouse D, Koldsø H, Sansom MS (2016) Free energy landscape of lipid interactions with regulatory binding sites on the transmembrane domain of the EGF receptor. J Phys Chem B 120(33):8154–8163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikonen E (2008) Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 9:125–138

    CAS  PubMed  Google Scholar 

  • Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH, Wemmer DE, Zhang X, Kuriyan J (2009) Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137(7):1293–1307

    PubMed  PubMed Central  Google Scholar 

  • Kharche SA, Sengupta D (2020) Dynamic protein interfaces and conformational landscapes of membrane protein complexes. Curr Op Struct Biol 61:191–197

    CAS  Google Scholar 

  • Kovács T, Batta G, Hajdu T, Szabó Á, Váradi T, Zákány F, Csomós I, Szöllosi J, Nagy P (2016) The dipole potential modifies the clustering and ligand binding affinity of ErbB proteins and their signaling efficiency. Sci Rep 6(1):1–11

    Google Scholar 

  • Lelimousin M, Limongelli V, Sansom MS (2016) Conformational changes in the epidermal growth factor receptor: role of the transmembrane domain investigated by coarse-grained MetaDynamics free energy calculations. J Am Chem Soc 138(33):10611–10622. https://doi.org/10.1021/jacs.6b05602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li E, Hristova K (2010) Receptor tyrosine kinase transmembrane domains: function, dimer structure and dimerization energetics. Cell Adh Migr 4(2):249–254

    PubMed  PubMed Central  Google Scholar 

  • Li E, Wimley WC (2012) Transmembrane helix dimerization: beyond the search for sequence motifs. Biochim Biophys Acta Biomembr 2:183–193

    Google Scholar 

  • Li YC, Park MJ, Ye SK, Kim CW, Kim YN (2006) Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol 168(4):1107–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda R, Sato T, Okamoto K, Yanagawa M, Sako Y (2018) Lipid-protein interplay in dimerization of juxtamembrane domains of epidermal growth factor receptor. Biophys J 114(4):893–903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marrink SJ, Risselada JH, Yefimov S, Tieleman PD, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824

    CAS  PubMed  Google Scholar 

  • Maruyama IN (2015) Activation of transmembrane cell-surface receptors via a common mechanism? The “rotation model”. BioEssays 37(9):959–967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita C, Tamagakia H, Miyazawaa Y, Aimotoa S, Smith SO, Sato T, Tamagaki H, Miyazawa Y, Aimoto S (2013) Transmembrane helix orientation influences membrane binding of the intracellular juxtamembrane domain in Neu receptor peptides. Proc Natl Acad Sci USA 110(5):1646–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendrola JM, Berger MB, King MC, Lemmon MA (2002) The single transmembrane domains of ErbB receptors self-associate in cell membranes. J Biol Chem 277(7):4704–4712

    CAS  PubMed  Google Scholar 

  • Mineev KS, Panova SV, Bocharova OV, Bocharov EV, Arseniev AS (2015) The membrane mimetic affects the spatial structure and mobility of EGFR transmembrane and juxtamembrane domains. Biochemistry 54(41):6295–6298

    CAS  PubMed  Google Scholar 

  • Mohole M, Prasanna X, Sengupta D, Chattopadhyay A (2018) Molecular signatures of cholesterol interaction with serotonin receptors. In: Biochemical and biophysical roles of cell surface molecules. Springer, New York, pp 151–160

  • Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366(1):2–16

    CAS  PubMed  Google Scholar 

  • Paila YD, Chattopadhyay A (2009) The function of g-protein coupled receptors and membrane cholesterol: specific or general interaction? Glyco J 26:711

    CAS  Google Scholar 

  • Pal S, Chakraborty H, Bandari S, Yahioglu G, Suhling K, Chattopadhyay A (2016) Molecular rheology of neuronal membranes explored using a molecular rotor: implications for receptor function. Chem Phys Lipids 196:69–75

    CAS  PubMed  Google Scholar 

  • Pawar AB, Sengupta D (2019) Resolving the conformational dynamics of ErbB growth factor receptor dimers. J Struct Biol 207(2):225–233

    CAS  PubMed  Google Scholar 

  • Pawar AB, Deshpande SA, Gopal SM, Wassenaar TA, Athale CA, Sengupta D (2015) Thermodynamic and kinetic characterization of transmembrane helix association. Phys Chem Chem Phys 17:1390–1398

    CAS  PubMed  Google Scholar 

  • Perego C, Da Dalt L, Pirillo A, Galli A, Catapano AL, Norata GD (2019) Cholesterol metabolism, pancreatic \(\beta\)-cell function and diabetes. Biochim Biophys Acta (BBA)-Mol Basis Disease 1865(9):2149–2156

    CAS  Google Scholar 

  • Pike LJ, Casey L (2002) Cholesterol levels modulate EGF receptor-mediated signaling by altering receptor function and trafficking. Biochemistry 41(32):10315–10322

    CAS  PubMed  Google Scholar 

  • Prakash A, Janosi L, Doxastakis M (2010) Self-association of models of transmembrane domains of ErbB receptors in a lipid bilayer. Biophys J 99(11):3657–3665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash A, Janosi L, Doxastakis M (2011) GxxxG motifs, phenylalanine, and cholesterol guide the self-association of transmembrane domains of ErbB2 receptors. Biophys J 101(8):1949–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna X, Praveen PJ, Sengupta D (2013) Sequence dependent lipid-mediated effects modulate the dimerization of ErbB2 and its associative mutants. Phys Chem Chem Phys 15(43):19031–19041

    CAS  PubMed  Google Scholar 

  • Prasanna X, Mohole M, Chattopadhyay A, Sengupta D (2020) Role of cholesterol-mediated effects in gpcr heterodimers. Chem Phys Lipids 227:104852

    CAS  PubMed  Google Scholar 

  • Psachoulia E, Fowler PW, Bond PJ, Sansom MSP (2008) HelixHelix interactions in membrane proteins: coarse-grained simulations of glycophorin a helix dimerization. Biochemistry 47:10503–10512

    CAS  PubMed  Google Scholar 

  • Ringerike T, Blystad FD, Levy FO, Madshus IH, Stang E (2002) Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. J Cell Sci 115(6):1331–1340

    CAS  PubMed  Google Scholar 

  • Roskoski R (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 79:34–74

    CAS  PubMed  Google Scholar 

  • Sarkar P, Chattopadhyay A (2020) Cholesterol interaction motifs in G protein-coupled receptors: slippery hot spots? Wiley Interdiscip Rev Syst Biol Med 12:e1481

    CAS  PubMed  Google Scholar 

  • Schneider D (2017) Border controls: lipids control proteins and proteins control lipids. Biochim Biophys Acta Biomembr 1859(4):507–508

    CAS  PubMed  Google Scholar 

  • Semrau S, Schmidt T (2009) Membrane heterogeneity—from lipid domains to curvature effects. Soft Matter 5(17):3174–3186

    CAS  Google Scholar 

  • Sengupta D, Chattopadhyay A (2015) Molecular dynamics simulations of GPCR–cholesterol interaction: an emerging paradigm. Biochim Biophys Acta (BBA) Biomembr 1848:1775–1782

    CAS  Google Scholar 

  • Sengupta D, Prasanna X, Mohole M, Chattopadhyay A (2018) Exploring GPCR-lipid interactions by molecular dynamics simulations: excitements, challenges, and the way forward. J Phys Chem B 122:5727–5737

    CAS  PubMed  Google Scholar 

  • Sharpe S, Barber KR, Grant CWM (2002) Evidence of a tendency to self-association of the transmembrane domain of ErbB-2 in fluid phospholipid bilayers. Biochemistry 41:2341–2353

    CAS  PubMed  Google Scholar 

  • Soumana OS, Garnier N, Genest M (2008) Insight into the recognition patterns of the ErbB receptor family transmembrane domains: heterodimerization models through molecular dynamics search. Eur Biophys J 37(6):851–864

    Google Scholar 

  • Sternberg MJ, Gullick WJ (1990) A sequence motif in the transmembrane region of growth factor receptors with tyrosine kinase activity mediates dimerization. Protein Eng Des Sel 3(4):245–248

    CAS  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–18

    Google Scholar 

  • Tribello, GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) Plumed 2: new feathers for an old bird. Comput Phys Commun 185:604–613

    CAS  Google Scholar 

  • Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    PubMed  PubMed Central  Google Scholar 

  • Viegas A, Yin DM, Borggräfe J, Viennet T, Falke M, Schmitz A, Famulok M, Etzkorn M (2020) Molecular architecture of a network of potential intracellular EGFR modulators: ARNO, CaM, phospholipids, and the juxtamembrane segment. Structure 28(1):54–62

    CAS  PubMed  Google Scholar 

  • Zhang J, Lazaridis T (2009) Transmembrane helix association affinity can be modulated by flanking and noninterfacial residues. Biophys J 96:4418–4427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang J, Li Q, Wu Y, Wang D, Xu L, Zhang Y, Wang S, Wang T, Liu F, Zaky MY, Hou S, Liu S, Zou K, Lei H, Zou L, Liu H (2019) Cholesterol content in cell membrane maintains surface levels of ErbB2 and confers a therapeutic vulnerability in ErbB2-positive breast cancer. J Cell Commun Signaling 17(1):1–12

    Google Scholar 

  • Zhuang L, Kim J, Adam RM, Solomon KR, Freeman MR (2005) Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. Eur J Clin Invest European 115(4):959–968

    CAS  Google Scholar 

Download references

Acknowledgements

D.S. gratefully acknowledges the support of the Ramalingaswami Fellowship from the Dept. of Biotechnology (D.B.T) Govt. of India. A.P. gratefully acknowledges the Senior research fellowship (SRF) from CSIR.

Author information

Authors and Affiliations

Authors

Contributions

DS and AP designed the research and performed the simulations and analysis.

Corresponding author

Correspondence to Durba Sengupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 1734 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, A.B., Sengupta, D. Role of Cholesterol in Transmembrane Dimerization of the ErbB2 Growth Factor Receptor. J Membrane Biol 254, 301–310 (2021). https://doi.org/10.1007/s00232-021-00168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-021-00168-z

Keywords

Navigation