Skip to main content
Log in

Features of the Phosphatidylinositol Cycle and its Role in Signal Transduction

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The phosphatidylinositol cycle (PI-cycle) has a central role in cell signaling. It is the major pathway for the synthesis of phosphatidylinositol and its phosphorylated forms. In addition, some lipid intermediates of the PI-cycle, including diacylglycerol and phosphatidic acid, are also important lipid signaling agents. The PI-cycle has some features that are important for the understanding of its role in the cell. As a cycle, the intermediates will be regenerated. The PI-cycle requires a large amount of metabolic energy. There are different steps of the cycle that occur in two different membranes, the plasma membrane and the endoplasmic reticulum. In order to complete the PI-cycle lipid must be transferred between the two membranes. The role of the Nir proteins in the process has recently been elucidated. The lipid intermediates of the PI-cycle are normally highly enriched with 1-stearoyl-2-arachidonoyl molecular species in mammals. This enrichment will be retained as long as the intermediates are segregated from other lipids of the cell. However, there is a significant fraction (>15 %) of lipids in the PI-cycle of normal cells that have other acyl chains. Phosphatidylinositol largely devoid of arachidonoyl chains are found in cancer cells. Phosphatidylinositol species with less unsaturation will not be as readily converted to phosphatidylinositol-3,4,5-trisphosphate, the lipid required for the activation of Akt with resulting effects on cell proliferation. Thus, the cyclical nature of the PI-cycle, its dependence on acyl chain composition and its requirement for lipid transfer between two membranes, explain many of the biological properties of this cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Taken from English and Voeltz (2013) (Color figure online)

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CDP-DAG:

Cytidine diphosphate-diacylglycerol

CDS:

CDP-DAG synthase (Phosphatidate cytidylyltransferase)

DAG:

Diacylglycerol

DGK:

Diacylglycerol kinase

LPIAT1:

Lysophosphatidylinositol acyltransferase 1 (O-acyltransferase containing domain 7) (MBOAT7)

PA:

Phosphatidic acid

PI:

Phosphatidylinositol

PI-cycle:

Phosphatidylinositol cycle

PI3K:

Phosphatidylinositol-4,5-bisphosphate 3-kinase

PI4K:

Phosphatidylinositol-4-kinase

PI4P:

Phosphatidylinositol-4-phosphate

PIP2 :

Phosphatidylinositol-4,5-bisphosphate

PIP3 :

Phosphatidylinositol-3,4,5-trisphosphate

PIP n :

Phosphorylated forms of PI

PI4P5K:

Phosphatidylinositol-4-phosphate 5-kinase

PIS:

PI synthase (CDP-diacylglycerol-inositol 3-phosphatidyltransferase)

PKC:

Protein kinase C

PLC:

Phospholipase C (1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase)

PLD:

Phospholipase D

PTEN:

Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (Phosphatase and tensin homolog)

TrpC channel:

Transient receptor cation channel

References

  • Anderson KE, Kielkowska A, Durrant TN, Juvin V, Clark J, Stephens LR, Hawkins PT (2013) Lysophosphatidylinositol-acyltransferase-1 (LPIAT1) is required to maintain physiological levels of PtdIns and PtdInsP(2) in the mouse. PLoS ONE 8:e58425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki J, Nagai Y, Hosono H, Inoue K, Arai H (2002) Structure and function of phosphatidylserine-specific phospholipase A1. Biochim Biophys Acta 1582:26–32

    Article  CAS  PubMed  Google Scholar 

  • Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balla A, Balla T (2006) Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol 16:351–361

    Article  CAS  PubMed  Google Scholar 

  • Balla T, Szentpetery Z, Kim YJ (2009) Phosphoinositide signaling: new tools and insights. Physiology 24:231–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumental-Perry A, Haney CJ, Weixel KM, Watkins SC, Weisz OA, Aridor M (2006) Phosphatidylinositol 4-phosphate formation at ER exit sites regulates ER export. Dev Cell 11:671–682

    Article  CAS  PubMed  Google Scholar 

  • Bojjireddy N, Botyanszki J, Hammond G, Creech D, Peterson R, Kemp DC, Snead M, Brown R, Morrison A, Wilson S, Harrison S, Moore C, Balla T (2014) Pharmacological and genetic targeting of the PI4KA enzyme reveals its important role in maintaining plasma membrane phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate levels. J Biol Chem 289:6120–6132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calloway N, Owens T, Corwith K, Rodgers W, Holowka D, Baird B (2011) Stimulated association of STIM1 and Orai1 is regulated by the balance of PtdIns(4,5)P(2) between distinct membrane pools. J Cell Sci 124:2602–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco S, Merida I (2007) Diacylglycerol, when simplicity becomes complex. Trends Biochem Sci 32:27–36

    Article  CAS  PubMed  Google Scholar 

  • Chang CL, Liou J (2015) Phosphatidylinositol 4,5-bisphosphate homeostasis regulated by Nir2 and Nir3 proteins at endoplasmic reticulum–plasma membrane junctions. J Biol Chem 290:14289–14301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocco L, Gilmour RS, Ognibene A, Letcher AJ, Manzoli FA, Irvine RF (1987) Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem J 248:765–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocco L, Martelli AM, Gilmour RS, Ognibene A, Manzoli FA, Irvine RF (1989) Changes in nuclear inositol phospholipids induced in intact cells by insulin-like growth factor I. Biochem Biophys Res Commun 159:720–725

    Article  CAS  PubMed  Google Scholar 

  • Cockcroft S, Garner K (2011) Function of the phosphatidylinositol transfer protein gene family: is phosphatidylinositol transfer the mechanism of action? Crit Rev Biochem Mol Biol 46:89–117

    Article  CAS  PubMed  Google Scholar 

  • Cross MJ, Roberts S, Ridley AJ, Hodgkin MN, Stewart A, Claesson-Welsh L, Wakelam MJ (1996) Stimulation of actin stress fibre formation mediated by activation of phospholipase D. Curr Biol 6:588–597

    Article  CAS  PubMed  Google Scholar 

  • Deacon EM, Pettitt TR, Webb P, Cross T, Chahal H, Wakelam MJO, Lord JM (2002) Generation of diacylglycerol molecular species through the cell cycle: a role for 1-stearoyl, 2-arachidonyl glycerol in the activation of nuclear protein kinase C-βII at G2/M. J Cell Sci 115:983–989

    CAS  PubMed  Google Scholar 

  • Decaffmeyer M, Shulga YV, Dicu AO, Thomas A, Truant R, Topham MK, Brasseur R, Epand RM (2008) Determination of the topology of the hydrophobic segment of mammalian diacylglycerol kinase epsilon in a cell membrane and its relationship to predictions from modeling. J Mol Biol 383:797–809

    Article  CAS  PubMed  Google Scholar 

  • Delage E, Puyaubert J, Zachowski A, Ruelland E (2013) Signal transduction pathways involving phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: convergences and divergences among eukaryotic kingdoms. Prog Lipid Res 52:1–14

    Article  CAS  PubMed  Google Scholar 

  • D’Souza K, Epand RM (2014) Enrichment of phosphatidylinositols with specific acyl chains. Biochim Biophys Acta 1838:1501–1508

    Article  PubMed  CAS  Google Scholar 

  • D’Souza K, Epand RM (2015) The phosphatidylinositol synthase catalyzed formation of phosphatidylinositol does not exhibit acyl chain specificity. Biochemistry 54:1151–1153

    Article  PubMed  CAS  Google Scholar 

  • D’Souza K, Kim YJ, Balla T, Epand RM (2014) Distinct properties of the two isoforms of CDP-diacylglycerol synthase. Biochemistry 53:7358–7367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • English AR, Voeltz GK (2013) Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol 5:a013227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gantayet A, Jegatheswaran J, Jayakumaran G, Topham MK, Epand RM (2011) Endocannabinoids and diacylglycerol kinase activity. Biochim Biophys Acta 1808:1050–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner K, Hunt AN, Koster G, Somerharju P, Groves E, Li M, Raghu P, Holic R, Cockcroft S (2012) Phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1) binds and transfers phosphatidic acid. J Biol Chem 287:32263–32276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gijon MA, Riekhof WR, Zarini S, Murphy RC, Voelker DR (2008) Lysophospholipid acyltransferases and arachidonate recycling in human neutrophils. J Biol Chem 283:30235–30245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godi A, Pertile P, Meyers R, Marra P, Di TG, Iurisci C, Luini A, Corda D, De Matteis MA (1999) ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol 1:280–287

    Article  CAS  PubMed  Google Scholar 

  • Goto T, Terada N, Inoue T, Nakayama K, Okada Y, Yoshikawa T, Miyazaki Y, Uegaki M, Sumiyoshi S, Kobayashi T, Kamba T, Yoshimura K, Ogawa O (2014) The expression profile of phosphatidylinositol in high spatial resolution imaging mass spectrometry as a potential biomarker for prostate cancer. PLoS ONE 9:e90242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammond GRV, Balla T (2015) Polyphosphoinositide binding domains: key to inositol lipid biology. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1851:746–758

    Article  CAS  Google Scholar 

  • Hammond SM, Jenco JM, Nakashima S, Cadwallader K, QM Gu, Cook S, Nozawa Y, Prestwich GD, Frohman MA, Morris AJ (1997) Characterization of two alternately spliced forms of phospholipase D1: activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and rho family monomeric gtp-binding proteins and protein kinase C-α. J Biol Chem 272:3860–3868

    Article  CAS  PubMed  Google Scholar 

  • Hammond GR, Schiavo G, Irvine RF (2009) Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P(2). Biochem J 422:23–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond GR, Fischer MJ, Anderson KE, Holdich J, Koteci A, Balla T, Irvine RF (2012) PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337:727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond GR, Machner MP, Balla T (2014) A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J Cell Biol 205:113–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haucke V (2005) Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem Soc Trans 33:1285–1289

    Article  CAS  PubMed  Google Scholar 

  • Henne WM, Liou J, Emr SD (2015) Molecular mechanisms of inter-organelle ER-PM contact sites. Curr Opin Cell Biol 35:123–130

    Article  CAS  PubMed  Google Scholar 

  • Hofbauer HF, Schopf FH, Schleifer H, Knittelfelder OL, Pieber B, Rechberger GN, Wolinski H, Gaspar ML, Kappe CO, Stadlmann J, Mechtler K, Zenz A, Lohner K, Tehlivets O, Henry SA, Kohlwein SD (2014) Regulation of gene expression through a transcriptional repressor that senses acyl-chain length in membrane phospholipids. Dev Cell 29:729–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igal RA (2011) Roles of stearoylCoA desaturase-1 in the regulation of cancer cell growth, survival and tumorigenesis. Cancers 3:2462–2477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imae K, Inoue, T, Nakasaki Y, Uchida Y, Ohba Y, Kno N, Nakanishi H, Sasaki T, Mitani S, Arai H (2012) LYCAT, a homologue of C. elegans acl-8, acl-9, and acl-10, determines the fatty acid composition of phosphatidylinositol in mice. J Lipid Res 53:335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irvine RF, Divecha N (1992) Phospholipids in the nucleus—metabolism and possible functions. Semin Cell Biol 3:225–235

    Article  CAS  PubMed  Google Scholar 

  • Ischebeck T, Seiler S, Heilmann I (2010) At the poles across kingdoms: phosphoinositides and polar tip growth. Protoplasma 240:13–31

    Article  CAS  PubMed  Google Scholar 

  • Jenkins GM, Frohman MA (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62:2305–2316

    Article  CAS  PubMed  Google Scholar 

  • Jones DR, Sanjuan MA, Merida I (2000) Type Ialpha phosphatidylinositol 4-phosphate 5-kinase is a putative target for increased intracellular phosphatidic acid. FEBS Lett 476:160–165

    Article  CAS  PubMed  Google Scholar 

  • Kawashima M, Iwamoto N, Kawaguchi-Sakita N, Sugimoto M, Ueno T, Mikami Y, Terasawa K, Sato TA, Tanaka K, Shimizu K, Toi M (2013) High-resolution imaging mass spectrometry reveals detailed spatial distribution of phosphatidylinositols in human breast cancer. Cancer Sci 104:1372–1379

    Article  CAS  PubMed  Google Scholar 

  • Keinan O, Kedan A, Gavert N, Selitrennik M, Kim S, Karn T, Becker S, Lev S (2014) The lipid-transfer protein Nir2 enhances epithelial-mesenchymal transition and facilitates breast cancer metastasis. J Cell Sci 127:4740–4749

    Article  PubMed  CAS  Google Scholar 

  • Khan WA, Blobe GC, Richards AL, Hannun YA (1994) Identification, partial purification, and characterization of a novel phospholipid-dependent and fatty acid-activated protein kinase from human platelets. J Biol Chem 269:9729–9735

    CAS  PubMed  Google Scholar 

  • Kim YJ, Guzman-Hernandez ML, Balla T (2011) A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev Cell 21:813–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Kedan A, Marom M, Gavert N, Keinan O, Selitrennik M, Laufman O, Lev S (2013) The phosphatidylinositol-transfer protein Nir2 binds phosphatidic acid and positively regulates phosphoinositide signalling. EMBO Rep 14:891–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Guzman-Hernandez ML, Wisniewski E, Balla T (2015) Phosphatidylinositol-phosphatidic acid exchange by Nir2 at ER-PM contact sites maintains phosphoinositide signaling competence. Dev Cell 33:549–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura T, Jennings W, Epand RM (2016) Roles of specific lipid species in the cell and their molecular mechanism. Prog Lipid Res 62:75–92

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Hozumi Y, Ito T, Hosoya T, Kondo H, Goto K (2007) Differential subcellular targeting and activity-dependent subcellular localization of diacylglycerol kinase isozymes in transfected cells. Eur J Cell Biol 86:433–444

    Article  CAS  PubMed  Google Scholar 

  • Kohyama-Koganeya A, Watanabe M, Hotta Y (1997) Molecular cloning of a diacylglycerol kinase isozyme predominantly expressed in rat retina. FEBS Lett 409:258–264

    Article  CAS  PubMed  Google Scholar 

  • Koivunen J, Aaltonen V, Peltonen J (2006) Protein kinase C (PKC) family in cancer progression. Cancer Lett 235:1–10

    Article  CAS  PubMed  Google Scholar 

  • Krauss M, Haucke V (2007) Phosphoinositide-metabolizing enzymes at the interface between membrane traffic and cell signalling. EMBO Rep 8:241–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lands WE (1958) Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis. J Biol Chem 231:883–888

    CAS  PubMed  Google Scholar 

  • Lands WE (1960) Metabolism of glycerolipids 2. The enzymatic acylation of lysolecithin. J Biol Chem 235:2233–2237

    CAS  PubMed  Google Scholar 

  • Lands WE, Merkl I (1963) Metabolism of glycerolipids. III. Reactivity of various acyl esters of coenzyme a with alpha’-acylglycerophosphorylcholine, and positional specificities in lecithin synthesis. J Biol Chem 238:898–904

    CAS  PubMed  Google Scholar 

  • Lands WE, Inoue M, Sugiura Y, Okuyama H (1982) Selective incorporation of polyunsaturated fatty acids into phosphatidylcholine by rat liver microsomes. J Biol Chem 257:14968–14972

    CAS  PubMed  Google Scholar 

  • Lee SY, Wenk MR, Kim Y, Nairn AC, De Camilli P (2004) Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proc Natl Acad Sci USA 101:546–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HC, Inoue T, Sasaki J, Kubo T, Matsuda S, Nakasaki Y, Hattori M, Tanaka F, Udagawa O, Kono N, Itoh T, Ogiso H, Taguchi R, Arita M, Sasaki T, Arai H (2012) LPIAT1 regulates arachidonic acid content in phosphatidylinositol and is required for cortical lamination in mice. Mol Biol Cell 23:4689–4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liscovitch M, Chalifa V, Pertile P, Chen CS, Cantley LC (1994) Novel function of phosphatidylinositol 4,5-bisphosphate as a cofactor for brain membrane phospholipase D. J Biol Chem 269:21403–21406

    CAS  PubMed  Google Scholar 

  • Lung M, Shulga YV, Ivanova PT, Myers DS, Milne SB, Brown HA, Topham MK, Epand RM (2009) Diacylglycerol kinase epsilon is selective for both acyl chains of phosphatidic acid or diacylglycerol. J Biol Chem 284:31062–31073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo B, Prescott SM, Topham MK (2004) Diacylglycerol kinase zeta regulates phosphatidylinositol 4-phosphate 5-kinase Ialpha by a novel mechanism. Cell Signal 16:891–897

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Chong L, Tian R, Shi R, Hu TY, Ouyand Z, Xia Y (2016) Identification and quantitation of lipid C=C location isomers: a shotgun lipidomics approach enabled by photochemical reaction. Proc Natl Acad Sci USA 113:2573–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madani S, Hichami A, Legrand A, Belleville J, Khan NA (2001) Implication of acyl chain of diacylglycerols in activation of different isoforms of protein kinase C. FASEB J 15:2595–2601

    Article  CAS  PubMed  Google Scholar 

  • Marignani PA, Epand RM, Sebaldt RJ (1996) Acyl chain dependence of diacylglycerol activation of protein kinase C activity in vitro. Biochem Biophys Res Commun 225:469–473

    Article  CAS  PubMed  Google Scholar 

  • Matsuda S, Inoue T, Lee HC, Kono N, Tanaka F, Gengyo-Ando K, Mitani S, Arai H (2008) Member of the membrane-bound O-acyltransferase (MBOAT) family encodes a lysophospholipid acyltransferase with broad substrate specificity. Genes Cells 13:879–888

    Article  CAS  PubMed  Google Scholar 

  • Matsui H, Hozumi Y, Tanaka T, Okada M, Nakano T, Suzuki Y, Iseki K, Kakehata S, Topham MK, Goto K (2014) Role of the N-terminal hydrophobic residues of DGKepsilon in targeting the endoplasmic reticulum. Biochim Biophys Acta 1841:1440–1450

    Article  CAS  Google Scholar 

  • Milne SB, Ivanova PT, Armstrong MD, Myers DS, Lubarda J, Shulga YV, Topham MK, Brown HA, Epand RM (2008) Dramatic differences in the roles in lipid metabolism of two isoforms of diacylglycerol kinase. Biochemistry 47:9372–9379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minville-Walz M, Pierre AS, Pichon L, Bellenger S, Fevre C, Bellenger J, Tessier C, Narce M, Rialland M (2010) Inhibition of stearoyl-CoA desaturase 1 expression induces CHOP-dependent cell death in human cancer cells. PLoS ONE 5:e14363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moritz A, De Graan PN, Gispen WH, Wirtz KW (1992) Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J Biol Chem 267:7207–7210

    CAS  PubMed  Google Scholar 

  • Moseley JB, Goode BL (2006) The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 70:605–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadler A, Reither G, Feng S, Stein F, Reither S, Muller R, Schultz C (2013) The fatty acid composition of diacylglycerols determines local signaling patterns. Angew Chem Int Ed Engl 52:6330–6334

    Article  CAS  PubMed  Google Scholar 

  • Naguib A, Bencze G, Engle DD, Chio II, Herzka T, Watrud K, Bencze S, Tuveson DA, Pappin DJ, Trotman LC (2015) p53 mutations change phosphatidylinositol acyl chain composition. Cell Rep 10:8–19

    Article  CAS  PubMed  Google Scholar 

  • Oude Weernink PA, de Lopez JM, Schmidt M (2007) Phospholipase D signaling: orchestration by PIP2 and small GTPases. Naunyn Schmiedebergs Arch Pharmacol 374:399–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettitt TR, Wakelam MJ (1993) Bombesin stimulates distinct time-dependent changes in the sn-1,2-diradylglycerol molecular species profile from Swiss 3T3 fibroblasts as analysed by 3,5-dinitrobenzoyl derivatization and h.p.l.c. separation. Biochem J 289(Pt 2):487–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettitt TR, Martin A, Horton T, Liossis C, Lord JM, Wakelam MJ (1997) Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions. Phospholipase D-derived diacylglycerol does not activate protein kinase C in porcine aortic endothelial cells. J Biol Chem 272:17354–17359

    Article  CAS  PubMed  Google Scholar 

  • Pettitt TR, McDermott M, Saqib KM, Shimwell N, Wakelam MJ (2001) Phospholipase D1b and D2a generate structurally identical phosphatidic acid species in mammalian cells. Biochem J 360:707–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putney JW, Tomita T (2012) Phospholipase C signaling and calcium influx. Adv Biol Regul 52:152–164

    Article  CAS  PubMed  Google Scholar 

  • Puttmann M, Aufenanger J, von OE, Durholt S, Harenberg J, Harenberg J, Hoffmann GE (1993) Increased phospholipase A activities in sera of intensive-care patients show sn-2 specificity but no acyl-chain selectivity. Clin Chem 39:782–788

    CAS  PubMed  Google Scholar 

  • Rajotte D, Haddad P, Haman A, Cragoe EJ Jr, Hoang T (1992) Role of protein kinase C and the Na+/H+ antiporter in suppression of apoptosis by granulocyte macrophage colony-stimulating factor and interleukin-3. J Biol Chem 267:9980–9987

    CAS  PubMed  Google Scholar 

  • Rodriguez de Turco EB, Tang W, Topham MK, Sakane F, Marcheselli VL, Chen C, Taketomi A, Prescott SM, Bazan NG (2001) Diacylglycerol kinase epsilon regulates seizure susceptibility and long-term potentiation through arachidonoyl- inositol lipid signaling. Proc Natl Acad Sci USA 98:4740–4745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogasevskaia TP, Coorssen JR (2015) The role of phospholipase D in regulated exocytosis. J Biol Chem 290:28683–28696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohacs T (2009) Phosphoinositide regulation of non-canonical transient receptor potential channels. Cell Calcium 45:554–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Routt SM, Bankaitis VA (2004) Biological functions of phosphatidylinositol transfer proteins. Biochem Cell Biol 82:254–262

    Article  CAS  PubMed  Google Scholar 

  • Rueda-Rincon N, Bloch K, Derua R, Vyas R, Harms A, Hankemeier T, Khan NA, Dehairs J, Bagadi M, Binda MM, Waelkens E, Marine JC, Swinnen JV (2015) p53 attenuates AKT signaling by modulating membrane phospholipid composition. Oncotarget 6:21240–21254

    Article  PubMed  PubMed Central  Google Scholar 

  • Saarikangas J, Zhao H, Lappalainen P (2010) Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 90:259–289

    Article  CAS  PubMed  Google Scholar 

  • Santarius M, Lee CH, Anderson RA (2006) Supervised membrane swimming: small G-protein lifeguards regulate PIPK signalling and monitor intracellular PtdIns(4,5)P2 pools. Biochem J 398:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkes D, Rameh LE (2010) A novel HPLC-based approach makes possible the spatial characterization of cellular PtdIns5P and other phosphoinositides. Biochem J 428:375–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaglia N, Igal RA (2008) Inhibition of Stearoyl-CoA Desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis. Int J Oncol 33:839–850

    CAS  PubMed  Google Scholar 

  • Schmid AC, Wise HM, Mitchell CA, Nussbaum R, Woscholski R (2004) Type II phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid composition and head group phosphorylation. FEBS Lett 576:9–13

    Article  CAS  PubMed  Google Scholar 

  • Shulga YV, Myers DS, Ivanova PT, Milne SB, Brown HA, Topham MK, Epand RM (2010) Molecular species of phosphatidylinositol-cycle intermediates in the endoplasmic reticulum and plasma membrane. Biochemistry 49:312–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulga YV, Topham MK, Epand RM (2011) Regulation and functions of diacylglycerol kinases. Chem Rev 111:6186–6208

    Article  CAS  PubMed  Google Scholar 

  • Shulga YV, Anderson RA, Topham MK, Epand RM (2012) Phosphatidylinositol-4-phosphate 5-kinase isoforms exhibit acyl chain selectivity for both substrate and lipid activator. J Biol Chem 287:35953–35963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh BC, Leal K, Hille B (2010) Modulation of high-voltage activated Ca(2+) channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron 67:224–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura Y, Harada Y, Nishikawa S, Yamano K, Kamiya M, Shiota T, Kuroda T, Kuge O, Sesaki H, Imai K, Tomii K, Endo T (2013) Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria. Cell Metab 17:709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Bunting M, Zimmerman GA, McIntyre TM, Prescott SM (1996) Molecular cloning of a novel human diacylglycerol kinase highly selective for arachidonate-containing substrates. J Biol Chem 271:10237–10241

    Article  CAS  PubMed  Google Scholar 

  • Thompson LJ, Fields AP (1996) betaII protein kinase C is required for the G2/M phase transition of cell cycle. J Biol Chem 271:15045–15053

    Article  CAS  PubMed  Google Scholar 

  • Thompson W, MacDonald G (1976) Cytidine diphosphate diglyceride of bovine brain. Positional distribution of fatty acids and analysis of major molecular species. Eur J Biochem 65:107–111

    Article  CAS  PubMed  Google Scholar 

  • van Corven EJ, van Rijswijk A, Jalink K, van der Bend RL, van Blitterswijk WJ, Moolenaar WH (1992) Mitogenic action of lysophosphatidic acid and phosphatidic acid on fibroblasts. Dependence on acyl-chain length and inhibition by suramin. Biochem J 281(Pt 1):163–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasudevan L, Jeromin A, Volpicelli-Daley L, De CP, Holowka D, Baird B (2009) The beta- and gamma-isoforms of type I PIP5K regulate distinct stages of Ca2+ signaling in mast cells. J Cell Sci 122:2567–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicinanza M, D’Angelo G, Di CA, De Matteis MA (2008) Phosphoinositides as regulators of membrane trafficking in health and disease. Cell Mol Life Sci 65:2833–2841

    Article  CAS  PubMed  Google Scholar 

  • Weeks R, Dowhan W, Shen H, Balantac N, Meengs B, Nudelman E, Leung DW (1997) Isolation and expression of an isoform of human CDP-diacylglycerol synthase cDNA. DNA Cell Biol 16:281–289

    Article  CAS  PubMed  Google Scholar 

  • Wenk MR, De Camilli P (2004) Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc Natl Acad Sci USA 101:8262–8269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaradanakul A, Feng S, Shen C, Lariccia V, Lin MJ, Yang J, Kang TM, Dong P, Yin HL, Albanesi JP, Hilgemann DW (2007) Dual control of cardiac Na+Ca2+ exchange by PIP(2): electrophysiological analysis of direct and indirect mechanisms. J Physiol 582:991–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Council of Canada, Grant 9848.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Epand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epand, R.M. Features of the Phosphatidylinositol Cycle and its Role in Signal Transduction. J Membrane Biol 250, 353–366 (2017). https://doi.org/10.1007/s00232-016-9909-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9909-y

Keywords

Navigation