Skip to main content
Log in

Rat Liver Mitochondrial Dysfunction Induced by an Organic Arsenical Compound 4-(2-Nitrobenzaliminyl) Phenyl Arsenoxide

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Arsenic is successfully used in cancer chemotherapy and several cancer treatments on account of its apoptogenic effects. However, it is environmentally hazardous with potential for toxicity when distributed in the soil, water, and food, and long exposure to water contaminated with Arsenic may induce cancers. Some research studies have reported that liver is the storage site and an important target organ for Arsenic toxicity. In the present work, a new kind of organic arsenic compound, 4-(2-nitrobenzaliminyl) phenyl arsenoxide (NPA), was synthesized, and its potential involvement of mitochondria was explored. The results presented that the toxicology of NPA, at least in part, mediated mitochondrial function and may thoroughly destroy mitochondrial membrane physiological functions. NPA induced mitochondrial permeability transition pore (mtPTP) opening that induces mitochondrial biochemical abnormalities as evidenced by mitochondrial swelling, mitochondrial membrane potential breakdown, membrane fluidity alterations, and the strikingly remarkable protection of CsA. Meanwhile, both the decreased respiration rate of state 4 and the increased inner membrane H+ permeabilization revealed that the inner membrane function regarding important energy production chain was destroyed. The toxicity of NPA is due to its interaction with mitochondrial membrane thiol protein. This conclusion is based on the protective effects of RR, DTT, and MBM+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RAJ, Murphy MP, Sammut IA (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19(9):1088–1095

    Article  CAS  PubMed  Google Scholar 

  • Bae JH, Park JW, Kwon TK (2003) Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular Ca2+ depletion and cytochrome c release. Biochem Biophys Res Commun 303(4):1073–1079

    Article  CAS  PubMed  Google Scholar 

  • Belyaeva EA, Korotkov SM (2003) Mechanism of primary Cd2+-induced rat liver mitochondria dysfunction: discrete modes of Cd2+ action on calcium and thiol-dependent domains. Toxicol Appl Pharm 192(1):56–68

    Article  CAS  Google Scholar 

  • Bustamante J, Nutt L, Orrenius S, Gogvadze V (2005) Arsenic stimulates release of cytochrome c from isolated mitochondria via induction of mitochondrial permeability transition. Toxicol Appl Pharmacol 207(2):110–116

    Article  PubMed  Google Scholar 

  • Castanha Zanoli JC, Maioli MA, Medeiros HC, Mingatto FE (2012) MingattoAbamectin affects the bioenergetics of liver mitochondria: a potential mechanism of hepatotoxicity. Toxicol In Vitro 26(1):51–56

    Article  CAS  PubMed  Google Scholar 

  • Chen XY, Hu XL, Xia CF, Qin CQ, Liu Y (2013) Antibacterial evaluation of novel organoarsenic compounds by the microcalorimetric method. Biol Trace Elem Res 153(1–3):382–389

    Article  CAS  PubMed  Google Scholar 

  • Choong TSY, Chuah TG, Robiah Y, Gregory Koay FL, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166

    Article  CAS  Google Scholar 

  • Dong JX, Zhao GY, Yu QLY, Li R, Yuan L, Chen J, Liu Y (2013) Mitochondrial dysfunction induced by Honokiol. J Membr Biol 246(5):375–381

    Article  CAS  PubMed  Google Scholar 

  • Eliseev RA, Salter JD, Gunter KK, Gunter TE (2003) Bcl-2 and tBid proteins counter-regulate mitochondrial potassium transport. Biochim Biophys Acta 1604(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Bioenerg Biomenbr 177(2):751–766

    CAS  Google Scholar 

  • Han YH, Kim SZ, Kim SH, Park WH (2008) Arsenic trioxide inhibits the growth of Calu-6 cells via inducing a G2 arrest of the cell cycle and apoptosis accompanied with the depletion of GSH. Cancer Lett 270(1):40–55

    Article  CAS  PubMed  Google Scholar 

  • Hosseini MJ, Shaki F, Ghazi-Khansari M, Pourahmad J (2013) Toxicity of Arsenic (III) on isolated liver mitochondria: a new mechanistic. Appr Iran J Pharmaceut Res 12:121–138

    CAS  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519

    Article  CAS  PubMed  Google Scholar 

  • Leung AW, Varanyuwatana P, Halestrap AP (2008) The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem Bioenergy 283(39):26312–26323

    Article  CAS  Google Scholar 

  • Li JH, Zhang Y, Xiao Q, Tian FF, Liu XR, Li R, Zhao GY, Jiang FL, Liu Y (2011) Mitochondria as target of quantum dots toxicity. J Hazard Mater 194:440–444

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Waalkes MP (2008) Liver is a target of arsenic carcinogenesis. Toxicol Sci 105(1):24–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu XR, Li JH, Zhang Y, Ge YS, Tian FF, Dai J, Jiang FL, Liu Y (2011) Mitochondrial permeability transition induced by different concentrations of Zinc. J Membr Biol 244(3):105–112

    Article  CAS  PubMed  Google Scholar 

  • Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Cancer Res 62(14):3893–3903

    CAS  PubMed  Google Scholar 

  • Murphy MP (2001) How understanding the control of energy metabolism can help investigation of mitochondrial dysfunction, regulation and pharmacology. BBA-Bioenergetics 1504(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (NRC) (2001) Subcommittee to update the 1999 arsenic in drinking water report. Arsenic in drinking water 2001 update. National Academy Press, Washington, pp 24–74

    Google Scholar 

  • Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112(4):481–490

    Article  CAS  PubMed  Google Scholar 

  • Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 338(1):668–676

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296(5576):2143–2145

    Article  CAS  PubMed  Google Scholar 

  • Paul MK, Kumar R, Mukhopadhyay AK (2008) Dithiothreitol abrogates the effect of arsenic trioxide on normal rat liver mitochondria and human hepatocellular carcinoma cells. Toxicol Appl Pharm 226(2):140–152

    Article  CAS  Google Scholar 

  • Puntel RL, Roos DH, Folmer V, Nogueira CW, Galina A, Aschner M, Rocha JB (2010) Mitochondrial dysfunction induced by different organochalchogens is mediated by thiol oxidation and is not dependent of the classical mitochondrial permeability transition pore opening. Toxicol Sci 117(1):133–143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ricchelli F, Beghetto C, Gobbo S, Tognon G, Moretto V, Crisma M (2003) Structural modifications of the permeability transition pore complex in resealed mitochondria induced by matrix-entrapped disaccharides. Arc Biochem Biophys 410(1):155–160

    Article  CAS  Google Scholar 

  • Robson LP, Daniel HR, Vanderlei F, Cristina WN, Antonio G, Michael A, João BTR (2010) Mitochondrial dysfunction induced by different organochalchogens is mediated by thiol oxidation and is not dependent of the classical mitochondrial permeability transition pore opening. Toxicol Sci 117(1):133–143

    Article  Google Scholar 

  • Rojewski MT, Korper S, Thiel E, Schrezenmeier H (2004) Depolarization of mitochondria and activation of caspases are common features of arsenic(III)-induced apoptosis in myelogenic and lymphatic cell lines. Chem Res Toxicol 17(1):119–128

    Article  CAS  PubMed  Google Scholar 

  • Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149(7):1536–1548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu DD, Xiao YF, Geng Y, Hou J (2010) Antitumor effect and mechanisms of arsenic trioxide on subcutaneously implanted human gastric cancer in nude mice. Cancer Genet Cytogen 198(2):90–96

    Article  CAS  Google Scholar 

  • Yu SP (2003) Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70(4):363–386

    Article  CAS  PubMed  Google Scholar 

  • Zhang TD, Chen GQ, Wang ZG, Zhen YW, Chen SJ, Chen Z (2001) Arsenic trioxide, a therapeutic agent for APL. Oncogene 20(49):7146–7153

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li JH, Liu XR, Jiang FL, Tian FF, Liu Y (2011) Spectroscopic and microscopic studies on the mechanisms of mitochondrial toxicity induced by different concentrations of cadmium. J Membr Biol 241(1):39–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21225313); Hubei Natural Science Foundation of China (No. 3013CFC027); B Plan of Hubei Provincial Education Office of China (No. B20114404) and the Hubei Polytechnic University Program of China (No.14xjz03A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, YH., Zhang, Q., Pan, LL. et al. Rat Liver Mitochondrial Dysfunction Induced by an Organic Arsenical Compound 4-(2-Nitrobenzaliminyl) Phenyl Arsenoxide. J Membrane Biol 248, 1071–1078 (2015). https://doi.org/10.1007/s00232-015-9818-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9818-5

Keywords

Navigation