Skip to main content
Log in

Membrane Assays to Characterize Interaction of Drugs with ABCB1

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

ATP-binding cassette sub-family B member 1 (ABCB1) [P-glycoprotein (P-gp), multidrug resistance protein 1 (MDR1)] can affect the pharmacokinetics, safety, and efficacy of drugs making it important to identify compounds that interact with ABCB1. The ATPase assay and vesicular transport (VT) assay are membrane based assays that can be used to measure the interaction of compounds with ABCB1 at a lower cost and higher throughput compared to cellular-based assays and therefore can be used earlier in the drug development process. To that end, we tested compounds previously identified as ABCB1 substrates and inhibitors for interaction with ABCB1 using the ATPase and VT assays. All compounds tested interacted with ABCB1 in both the ATPase and VT assays. All compounds previously identified as ABCB1 substrates activated ABCB1-mediated ATPase activity in the ATPase assay. All compounds previously identified as ABCB1 inhibitors inhibited the ABCB1-mediated transport in the VT assay. Interestingly, six of the ten compounds previously identified as ABCB1 inhibitors activated the basal ATPase activity in activation assays suggesting that the compounds are substrates of ABCB1 but can inhibit ABCB1 in inhibition assays. Importantly, for ATPase activators the EC50 of activation correlated with the IC50 values from the VT assay showing that interactions of compounds with ABCB1 can be measured with similar levels of potency in either assay. For ATPase nonactivators the IC50 values from the ATPase inhibition and VT inhibition assay showed correlation. These results demonstrate the utility of membrane assays as tools to detect and rank order drug–transporter interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adachi Y, Suzuki H, Sugiyama Y (2001) Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm Res 18:1660–1668

    Article  CAS  PubMed  Google Scholar 

  • Ambudkar SV, Lelong IH, Zhang J, Cardarelli CO, Gottesman MM, Pastan I (1992) Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Proc Natl Acad Sci USA 89:8472–8476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bauer M et al (2012) Pgp-mediated interaction between (R)-[11C]verapamil and tariquidar at the human blood–brain barrier: a comparison with rat data. Clin Pharmacol Ther 91:227–233. doi:10.1038/clpt.2011.217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bauer M et al (2013) Interaction of 11C-tariquidar and 11C-elacridar with P-glycoprotein and breast cancer resistance protein at the human blood–brain barrier. J Nucl Med 54:1181–1187. doi:10.2967/jnumed.112.118232

    Article  CAS  PubMed  Google Scholar 

  • Bauer M et al (2014) In vivo P-glycoprotein function before and after epilepsy surgery. Neurology 83:1326–1331. doi:10.1212/WNL.0000000000000858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bentz J et al (2013) Variability in P-glycoprotein inhibitory potency (IC(5)(0)) using various in vitro experimental systems: implications for universal digoxin drug–drug interaction risk assessment decision criteria. Drug Metab Dispos 41:1347–1366. doi:10.1124/dmd.112.050500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bihorel S, Camenisch G, Lemaire M, Scherrmann JM (2007) Modulation of the brain distribution of imatinib and its metabolites in mice by valspodar, zosuquidar and elacridar. Pharm Res 24:1720–1728. doi:10.1007/s11095-007-9278-4

    Article  CAS  PubMed  Google Scholar 

  • Broxterman HJ, Kuiper CM, Schuurhuis GJ, Tsuruo T, Pinedo HM, Lankelma J (1988) Increase of daunorubicin and vincristine accumulation in multidrug resistant human ovarian carcinoma cells by a monoclonal antibody reacting with P-glycoprotein. Biochem Pharmacol 37:2389–2393

    Article  CAS  PubMed  Google Scholar 

  • Buss N, Snell P, Bock J, Hsu A, Jorga K (2001) Saquinavir and ritonavir pharmacokinetics following combined ritonavir and saquinavir (soft gelatin capsules) administration. Br J Clin Pharmacol 52:255–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Callies S et al (2003) A population pharmacokinetic model for paclitaxel in the presence of a novel P-gp modulator, Zosuquidar Trihydrochloride (LY335979). Br J Clin Pharmacol 56:46–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cer RZ, Mudunuri U, Stephens R, Lebeda FJ (2009) IC50-to-Ki: a web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding. Nucleic Acids Res 37:W441–W445. doi:10.1093/nar/gkp253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choo EF et al (2006) Differential in vivo sensitivity to inhibition of P-glycoprotein located in lymphocytes, testes, and the blood–brain barrier. J Pharmacol Exp Ther 317:1012–1018. doi:10.1124/jpet.105.099648

    Article  CAS  PubMed  Google Scholar 

  • Clay AT, Sharom FJ (2013) Lipid bilayer properties control membrane partitioning, binding, and transport of p-glycoprotein substrates. Biochemistry 52:343–354. doi:10.1021/bi301532c

    Article  CAS  PubMed  Google Scholar 

  • Collett A, Tanianis-Hughes J, Hallifax D, Warhurst G (2004) Predicting P-glycoprotein effects on oral absorption: correlation of transport in Caco-2 with drug pharmacokinetics in wild-type and mdr1a(−/−) mice in vivo. Pharm Res 21:819–826

    Article  CAS  PubMed  Google Scholar 

  • Currier SJ, Ueda K, Willingham MC, Pastan I, Gottesman MM (1989) Deletion and insertion mutants of the multidrug transporter. J Biol Chem 264:14376–14381

    CAS  PubMed  Google Scholar 

  • Dantzig AH et al (1996) Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res 56:4171–4179

    CAS  PubMed  Google Scholar 

  • Ding R, Tayrouz Y, Riedel KD, Burhenne J, Weiss J, Mikus G, Haefeli WE (2004) Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther 76:73–84. doi:10.1016/j.clpt.2004.02.008

    Article  CAS  PubMed  Google Scholar 

  • Doige CA, Yu X, Sharom FJ (1992) ATPase activity of partially purified P-glycoprotein from multidrug-resistant Chinese hamster ovary cells. Biochim Biophys Acta 1109:149–160

    Article  CAS  PubMed  Google Scholar 

  • Eleftheriou G, Bacis G, Fiocchi R, Sebastiano R (2008) Colchicine-induced toxicity in a heart transplant patient with chronic renal failure. Clin Toxicol (Phila) 46:827–830. doi:10.1080/15563650701779703

    Article  CAS  Google Scholar 

  • EMA-Guidance (2010) http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/05/WC500090112.pdf

  • EMA-Guidance (2012) http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf. Accessed Nov 19 2014

  • FDA-Guidance (2006) http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm093606.htm

  • FDA-Guidance (2012) http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf. Accessed Nov 19 2014

  • Giacomini KM et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236. doi:10.1038/nrd3028

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Banfield C, Kantesaria B, Marino M, Clement R, Affrime M, Batra V (2001) Pharmacokinetic and safety profile of desloratadine and fexofenadine when coadministered with azithromycin: a randomized, placebo-controlled, parallel-group study. Clin Ther 23:451–466

    Article  CAS  PubMed  Google Scholar 

  • Heredi-Szabo K et al (2013) A P-gp vesicular transport inhibition assay—optimization and validation for drug–drug interaction testing. Eur J Pharm Sci 49:773–781. doi:10.1016/j.ejps.2013.04.032

    Article  CAS  PubMed  Google Scholar 

  • Hochman JH, Chiba M, Nishime J, Yamazaki M, Lin JH (2000) Influence of P-glycoprotein on the transport and metabolism of indinavir in Caco-2 cells expressing cytochrome P-450 3A4. J Pharmacol Exp Ther 292:310–318

    CAS  PubMed  Google Scholar 

  • Hooiveld GJ, Heegsma J, van Montfoort JE, Jansen PL, Meijer DK, Muller M (2002) Stereoselective transport of hydrophilic quaternary drugs by human MDR1 and rat Mdr1b P-glycoproteins. Br J Pharmacol 135:1685–1694. doi:10.1038/sj.bjp.0704620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huisman MT, Smit JW, Wiltshire HR, Beijnen JH, Schinkel AH (2003) Assessing safety and efficacy of directed P-glycoprotein inhibition to improve the pharmacokinetic properties of saquinavir coadministered with ritonavir. J Pharmacol Exp Ther 304:596–602. doi:10.1124/jpet.102.044388

    Article  CAS  PubMed  Google Scholar 

  • Jalava KM, Partanen J, Neuvonen PJ (1997) Itraconazole decreases renal clearance of digoxin. Ther Drug Monit 19:609–613

    Article  CAS  PubMed  Google Scholar 

  • Kang MH, Figg WD, Ando Y, Blagosklonny MV, Liewehr D, Fojo T, Bates SE (2001) The P-glycoprotein antagonist PSC 833 increases the plasma concentrations of 6alpha-hydroxypaclitaxel, a major metabolite of paclitaxel. Clin Cancer Res 7:1610–1617

    CAS  PubMed  Google Scholar 

  • Kawamura K et al (2011) Evaluation of limiting brain penetration related to P-glycoprotein and breast cancer resistance protein using [(11)C]GF120918 by PET in mice. Mol Imaging Biol 13:152–160. doi:10.1007/s11307-010-0313-1

    Article  PubMed  Google Scholar 

  • Kharasch ED, Hoffer C, Whittington D, Sheffels P (2003) Role of P-glycoprotein in the intestinal absorption and clinical effects of morphine. Clin Pharmacol Ther 74:543–554. doi:10.1016/j.clpt.2003.08.011

    Article  CAS  PubMed  Google Scholar 

  • Kharasch ED, Bedynek PS, Walker A, Whittington D, Hoffer C (2008) Mechanism of ritonavir changes in methadone pharmacokinetics and pharmacodynamics: II. Ritonavir effects on CYP3A and P-glycoprotein activities. Clin Pharmacol Ther 84:506–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, Wilkinson GR (1998) The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 101:289–294. doi:10.1172/JCI1269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kovarik JM, Rigaudy L, Guerret M, Gerbeau C, Rost KL (1999) Longitudinal assessment of a P-glycoprotein-mediated drug interaction of valspodar on digoxin. Clin Pharmacol Ther 66:391–400. doi:10.1053/cp.1999.v66.a101462

    Article  CAS  PubMed  Google Scholar 

  • Leggas M et al (2006) Gefitinib modulates the function of multiple ATP-binding cassette transporters in vivo. Cancer Res 66:4802–4807. doi:10.1158/0008-5472.CAN-05-2915

    Article  CAS  PubMed  Google Scholar 

  • Lehnert M, Emerson S, Dalton WS, de Giuli R, Salmon SE (1993) In vitro evaluation of chemosensitizers for clinical reversal of P-glycoprotein-associated Taxol resistance. J Natl Cancer Inst Monogr 63–67

  • Li H, Jin HE, Kim W, Han YH, Kim DD, Chung SJ, Shim CK (2008) Involvement of P-glycoprotein, multidrug resistance protein 2 and breast cancer resistance protein in the transport of belotecan and topotecan in Caco-2 and MDCKII cells. Pharm Res 25:2601–2612. doi:10.1007/s11095-008-9678-0

    Article  CAS  PubMed  Google Scholar 

  • Malingre MM et al (2001) The co-solvent Cremophor EL limits absorption of orally administered paclitaxel in cancer patients. Br J Cancer 85:1472–1477. doi:10.1054/bjoc.2001.2118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meerum Terwogt JM et al (1999) Coadministration of oral cyclosporin A enables oral therapy with paclitaxel. Clin Cancer Res 5:3379–3384

    CAS  PubMed  Google Scholar 

  • Mistry P et al (2001) In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res 61:749–758

    CAS  PubMed  Google Scholar 

  • Miyama T et al (1998) P-glycoprotein-mediated transport of itraconazole across the blood–brain barrier. Antimicrob Agents Chemother 42:1738–1744

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muzi M, Mankoff DA, Link JM, Shoner S, Collier AC, Sasongko L, Unadkat JD (2009) Imaging of cyclosporine inhibition of P-glycoprotein activity using 11C-verapamil in the brain: studies of healthy humans. J Nucl Med 50:1267–1275. doi:10.2967/jnumed.108.059162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petri N, Tannergren C, Rungstad D, Lennernas H (2004) Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm Res 21:1398–1404

    Article  CAS  PubMed  Google Scholar 

  • Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, Serabjit-Singh CS (2001) Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther 299:620–628

    CAS  PubMed  Google Scholar 

  • Rollot F, Pajot O, Chauvelot-Moachon L, Nazal EM, Kelaidi C, Blanche P (2004) Acute colchicine intoxication during clarithromycin administration. Ann Pharmacother 38:2074–2077. doi:10.1345/aph.1E197

    Article  PubMed  Google Scholar 

  • Romermann K et al (2013) (R)-[(11)C]verapamil is selectively transported by murine and human P-glycoprotein at the blood–brain barrier, and not by MRP1 and BCRP. Nucl Med Biol 40:873–878. doi:10.1016/j.nucmedbio.2013.05.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sadeque AJ, Wandel C, He H, Shah S, Wood AJ (2000) Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther 68:231–237. doi:10.1067/mcp.2000.109156

    Article  CAS  PubMed  Google Scholar 

  • Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T (1993) Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 268:6077–6080

    CAS  PubMed  Google Scholar 

  • Sakugawa T, Miura M, Hokama N, Suzuki T, Tateishi T, Uno T (2009) Enantioselective disposition of fexofenadine with the P-glycoprotein inhibitor verapamil. Br J Clin Pharmacol 67:535–540. doi:10.1111/j.1365-2125.2009.03396.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sarkadi B, Price EM, Boucher RC, Germann UA, Scarborough GA (1992) Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem 267:4854–4858

    CAS  PubMed  Google Scholar 

  • Sauna ZE, Nandigama K, Ambudkar SV (2006) Exploiting reaction intermediates of the ATPase reaction to elucidate the mechanism of transport by P-glycoprotein (ABCB1). J Biol Chem 281:26501–26511. doi:10.1074/jbc.M601917200

    Article  CAS  PubMed  Google Scholar 

  • Schuetz EG, Yasuda K, Arimori K, Schuetz JD (1998) Human MDR1 and mouse mdr1a P-glycoprotein alter the cellular retention and disposition of erythromycin, but not of retinoic acid or benzo(a)pyrene. Arch Biochem Biophys 350:340–347. doi:10.1006/abbi.1997.0537

    Article  CAS  PubMed  Google Scholar 

  • Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J (2003) Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem 46:1716–1725. doi:10.1021/jm021012t

    Article  CAS  PubMed  Google Scholar 

  • Schwarz UI, Gramatte T, Krappweis J, Oertel R, Kirch W (2000) P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans. Int J Clin Pharmacol Ther 38:161–167

    Article  CAS  PubMed  Google Scholar 

  • Shi J et al (2013) Pharmacokinetic interactions between 20(S)-ginsenoside Rh2 and the HIV protease inhibitor ritonavir in vitro and in vivo. Acta Pharmacol Sin 34:1349–1358. doi:10.1038/aps.2013.69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simpson K, Jarvis B (2000) Fexofenadine: a review of its use in the management of seasonal allergic rhinitis and chronic idiopathic urticaria. Drugs 59:301–321

    Article  CAS  PubMed  Google Scholar 

  • Smith AJ, Mayer U, Schinkel AH, Borst P (1998) Availability of PSC833, a substrate and inhibitor of P-glycoproteins, in various concentrations of serum. J Natl Cancer Inst 90:1161–1166

    Article  CAS  PubMed  Google Scholar 

  • Speeg KV, Maldonado AL, Liaci J, Muirhead D (1992) Effect of cyclosporine on colchicine secretion by the kidney multidrug transporter studied in vivo. J Pharmacol Exp Ther 261:50–55

    CAS  PubMed  Google Scholar 

  • Sziraki I et al (2011) Quinidine as an ABCB1 probe for testing drug interactions at the blood–brain barrier: an in vitro in vivo correlation study. J Biomol Screen 16:886–894. doi:10.1177/1087057111414896

    Article  CAS  PubMed  Google Scholar 

  • Takano A et al (2006) Evaluation of in vivo P-glycoprotein function at the blood–brain barrier among MDR1 gene polymorphisms by using 11C-verapamil. J Nucl Med 47:1427–1433

    CAS  PubMed  Google Scholar 

  • Tidefelt U et al (2000) P-Glycoprotein inhibitor valspodar (PSC 833) increases the intracellular concentrations of daunorubicin in vivo in patients with P-glycoprotein-positive acute myeloid leukemia. J Clin Oncol 18:1837–1844

    CAS  PubMed  Google Scholar 

  • van Praag RM et al (2000) Enhanced penetration of indinavir in cerebrospinal fluid and semen after the addition of low-dose ritonavir. AIDS 14:1187–1194

    Article  PubMed  Google Scholar 

  • von Moltke LL, Granda BW, Grassi JM, Perloff MD, Vishnuvardhan D, Greenblatt DJ (2004) Interaction of triazolam and ketoconazole in P-glycoprotein-deficient mice. Drug Metab Dispos 32:800–804

    Article  Google Scholar 

  • von Richter O, Glavinas H, Krajcsi P, Liehner S, Siewert B, Zech K (2009) A novel screening strategy to identify ABCB1 substrates and inhibitors. Naunyn Schmiedebergs Arch Pharmacol 379:11–26. doi:10.1007/s00210-008-0345-0

    Article  CAS  Google Scholar 

  • Wang Z, Hamman MA, Huang SM, Lesko LJ, Hall SD (2002) Effect of St John’s wort on the pharmacokinetics of fexofenadine. Clin Pharmacol Ther 71:414–420. doi:10.1067/mcp.2002.124080

    Article  CAS  PubMed  Google Scholar 

  • Xia CQ et al (2006) Comparison of species differences of P-glycoproteins in beagle dog, rhesus monkey, and human using Atpase activity assays. Mol Pharm 3:78–86

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhang YD, Zhao P, Huang SM (2009) Predicting drug–drug interactions: an FDA perspective. AAPS J 11:300–306. doi:10.1208/s12248-009-9106-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The help of Timea Rosta, MSc in preparation of the manuscript is acknowledged. The work was supported by the following Hungarian Grants: GOP-1.1.1-11-2011-0064, GOP-1.1.1-11-2011-0017 (PRODRUG), FP7 EUSTROKE, HEALTH-F2-2008-202213, XTTPSRT1, OM-00230/2005, TUDAS-1-2006-0029, OMFB-00505/2007, GOP-1.1.1-09/1-2009-0054.

Conflict of interest

SOLVO Biotechnology and Xenotech LLC specialize in development and commercialization of transporter technology applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Krajcsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fekete, Z., Rajnai, Z., Nagy, T. et al. Membrane Assays to Characterize Interaction of Drugs with ABCB1. J Membrane Biol 248, 967–977 (2015). https://doi.org/10.1007/s00232-015-9804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9804-y

Keywords

Navigation