Skip to main content
Log in

Effect of Biotin and Galactose Functionalized Gelatin Nanofiber Membrane on HEp-2 Cell Attachment and Cytotoxicity

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

In the present study, we prepared a gelatin nanofiber matrix using an electrospinning technique and cross-linked the nanofibers with 10 % glutaraldehyde vapors. The insoluble nanofibers were functionalized with bioactive molecules like biotin (1 %) and galactose (1 %) by adsorption and coelectrospinning. Surface morphology and fiber dimension were analyzed using atomic force microscopy. The amounts of biotin and galactose bound to the nanofibers before and after adsorption were quantified using high-performance liquid chromatography. Human larynx carcinoma (HEp-2) cell attachment, morphology and cytotoxic characteristics were studied using crystal violet staining and the MTT assay. Cell attachment and viability were highest in biotin- and galactose-embedded nanofibers compared to native nanofibers. Cytotoxicity was less with biotin- and galactose-embedded and adsorbed nanofibers compared to control nanofibers. Hence, we suggest that these biocompatible, nontoxic, biodegradable, functionalized nanofibers could be a potential candidate for application in tissue engineering and scaffold preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Altankov G, Brodvarova I, Rashkov I (1991) Synthesis of protein-coated gelatin microspheres and their use as microcarriers for cell culture 1. Derivatisation with native collagen. J Biomater Sci Polym 2:81–89

    Article  CAS  Google Scholar 

  • Amran AA, Zakaria Z, Othman F, Das S, Al-Mekhlafi Nor-Anita HM, Nordin MM (2011) Changes in the vascular cell adhesion molecule-1, intercellular adhesion molecule-1 and C-reactive protein following administration of aqueous extract of Piper sarmentosum on experimental rabbits fed with cholesterol diet. Lipids Health Dis 10:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Atala A, Lanza RP (2002) Methods of tissue engineering. Academic Press, San Diego

    Google Scholar 

  • Bhattarai SR, Bhattarai N, Yi HK et al (2004) Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25:2595–2602

    Article  CAS  PubMed  Google Scholar 

  • Blackburn CC, Schnaar RL (1983) Carbohydrate-specific cell adhesion is mediated by immobilized glycolipids. J Biol Chem 258:1180–1188

    CAS  PubMed  Google Scholar 

  • Chung HJ, Park TG (2007) Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Deliv Rev 59:249–262

    Article  CAS  PubMed  Google Scholar 

  • Cooper M, Lorenz Meyer M (2011) Label free technologies for drug delivery. Wiley, Hoboken

    Book  Google Scholar 

  • Ghasemi-Mobarakeh L, Morshed M, Karbalaie K, Fesharaki M, Nasr-Esfahani MH, Baharvand H (2008) Electrospun poly (ε-caprolactone) nanofiber mat as extracellular matrix. Yakhteh Med J 10:179–184

    CAS  Google Scholar 

  • Gropper SS, Smith LJ, Groff JL (2009) Advanced nutrition and human metabolism. Cengage Learning, Stamford

    Google Scholar 

  • Guidoin R, Marceau D, Rao TJ, King M, Merhi Y, Roy PE, Martin L, Duval M (1987) In vivo and in vitro characterization of an impervious polyester arterial prosthesis: the Gelseal Triaxial graft, in vivo. Biomaterials 8:433–444

    Article  CAS  PubMed  Google Scholar 

  • Harland RS, Peppas NA (1989) Solute diffusion in swollen membranes VII. Diffusion in semi crystalline networks. Colloid Polym Sci 3:218–225

    Article  Google Scholar 

  • Hong SR, Lee YM, Akaike T (2003) Evaluation of a galactose-carrying gelatin sponge for hepatocytes culture and transplantation. J Biomed Mater Res 67:733–741

    Article  Google Scholar 

  • Jeong SI, Melissa Krebs D, Bonino AC, Khan AS, Alsberg E (2010) Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromol Biosci 10:934–943

    Article  CAS  PubMed  Google Scholar 

  • Jonas RA, Ziemer G, Schoen FJ, Britton L, Castaneda AR (1988) A new sealant for knitted Dacron prostheses: minimally cross-linked gelatin. J Vasc Surg 7:414–419

    Article  CAS  PubMed  Google Scholar 

  • Kato YP, Christiansen DL, Hahn RA, Shieh SJ, Goldstein JD, Silver FH (1989) Mechanical properties of collagen fibers: a comparison of reconstituted rat tail tendon fibers. Biomaterials 10:38–42

    Article  CAS  PubMed  Google Scholar 

  • Kim SE (2003) Porous chitosan scaffold containing microspheres loaded with transforming growth factor-β1: implantation for cartilage tissue engineering. J Control Release 91:365–374

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Kwon OH (2007) Crosslinked gelatin nanofibers and their potential for tissue engineering. Key Eng Mater 342–343:169–172

    Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  • Lee JE (2004) Effects of the controlled released TGF-β1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials 25:4163–4173

    Article  CAS  PubMed  Google Scholar 

  • Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci USA 100:12741–12746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liang JF, Akaike T (1998) Hepatocytes cultured on lactose-substituted polystyrene become resistant to cytokine-induced cellular injury. Biotechnol Lett 20:2173–2176

    Article  Google Scholar 

  • Liu XH, Ma PX (2009) Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30:4094–4103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Laura A, Smith A, Hu J, Ma XP (2009) Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30:2252–2258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma Z, Kotaki M, Inai R et al (2005) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11:101–109

    Article  PubMed  Google Scholar 

  • Marois Y, Chakfé NL, Deng X, Marois M, How T, King MW, Guidoin R (1995) Carbodiimide cross-linked gelatin: a new coating for porous polyester arterial prostheses. Biomaterials 16:1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Martinez Rico C, Pincet F, Thiery J-P, Dufour S (2009) Integrins stimulate E-cadherin-mediated intercellular adhesion by regulating Src-kinase activation and actomyosin contractility. J Cell Sci 123:712–722

    Article  Google Scholar 

  • Olde Damink LHH, Dijkstra PJ, Luyn MJA, Wachem PB, Nieuwenhuis P, Feijen J (1995) Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J Mater Sci Mater Med 6:8460–8472

    Google Scholar 

  • Park TG (2002) Perfusion culture of hepatocytes within galactose-derivatized biodegradable poly(lactide-co-glycolide) scaffolds prepared by gas foaming of effervescent salts. J Biomed Mater Res 59:127–135

    Article  CAS  PubMed  Google Scholar 

  • Pezron I, Djabourov M, Leblond J (1991) Conformation of gelatin chains in aqueous solutions: 1. A light and small-angle neutron scattering study. Polymer 32:3201

    Article  CAS  Google Scholar 

  • Pu FR, Williams RL, Markkula TK, Hunt JA (2002) Effects of plasma treated PET and PTFE on expression of adhesion molecules by human endothelial cells invitro. Biomaterials 411:2428

    Google Scholar 

  • Ruijgrok JM, De Wijn JR, Boon ME (1994) Optimizing glutaraldehyde cross-linking of collagen: effects of time, temperature and concentration as measured by shrinkage temperature. J Mater Sci Mater Med 5:80–87

    Article  CAS  Google Scholar 

  • Shi J, Wang L, Zhang F, Li H, Lei L, Liu L, Chen Y (2010) Incorporating protein gradient into electrospun nanofibers as scaffolds for tissue engineering. ACS Appl Mater Interfaces 2:1025–1030

    Article  CAS  PubMed  Google Scholar 

  • Shieh SJ, Terada S, Vacanti JP (2004) Tissue engineering auricular reconstruction: in vitro and in vivo studies. Biomaterials 25:1545–1557

    Article  CAS  PubMed  Google Scholar 

  • Sriram D, Yogeeswari P (2010) Medical chemistry, 2nd edn. Dorling Kindersley, New York

    Google Scholar 

  • Tamai N, Myoui A, Hirao M, Kaito T, Ochi T, Tanaka J, Takaoka K, Yoshikawa H (2005) A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyl apatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). Osteoarthritis Cartilage 13:405–417

    Article  PubMed  Google Scholar 

  • Ulubayram K, Aksu E, Deliloglu Gurhan SI, Serbetci K, Hasirci N (2012) Cytotoxicity evaluation of gelatin sponges prepared with different crosslinking agents. J Biomater Sci Polymer Ed 13(11):1203–1219

    Article  Google Scholar 

  • Ward AG, Courts A (1977) The science and technology of gelatin. Academic Press, London

    Google Scholar 

  • Whang K, Goldstick TK, Healy KE (2000) A biodegradable polymer scaffold for delivery of osteotropic factors. Biomaterials 21:2545–2551

    Article  CAS  PubMed  Google Scholar 

  • Yannas IV (2004) Natural materials. In: Ratner BD, Hoffman AS, Schoen FJ et al (eds) Biomaterial science: an introduction to materials in medicine, 2nd edn. Elsevier Academic Press, San Diego, pp 127–136

    Google Scholar 

  • Yoon JJ, Park TG (2001) Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J Biomed Mater Res 55:401–408

    Article  CAS  PubMed  Google Scholar 

  • Yoon JJ, Nam YS, Kim JH, Park TG (2002) Surface immobilization of galactose onto aliphatic biodegradable polymers for hepatocyte culture. Biotechnol Bioeng 78:1–10

    Article  CAS  PubMed  Google Scholar 

  • Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S (2006) Cross linking of the electrospun gelatin nanofibers. Polymer 47:2911–2917

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. V. Ramamurthy, professor and head, Department of Biotechnology, for his help in allowing us to use the lab facility. The authors also acknowledge Mr. K. Karthikeyan for help in AFM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Selvakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvakumar, R., Mohaideen, S.N.M., Aravindh, S. et al. Effect of Biotin and Galactose Functionalized Gelatin Nanofiber Membrane on HEp-2 Cell Attachment and Cytotoxicity. J Membrane Biol 247, 35–43 (2014). https://doi.org/10.1007/s00232-013-9608-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9608-x

Keywords

Navigation