Skip to main content
Log in

Under Construction: Building the Macromolecular Superstructure and Signaling Components of an Electrical Synapse

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

A great deal is now known about the protein components of tight junctions and adherens junctions, as well as how these are assembled. Less is known about the molecular framework of gap junctions, but these also have membrane specializations and are subject to regulation of their assembly and turnover. Thus, it is reasonable to consider that these three types of junctions may share macromolecular commonalities. Indeed, the tight junction scaffolding protein zonula occluden-1 (ZO-1) is also present at adherens and gap junctions, including neuronal gap junctions. On the basis of these earlier observations, we more recently found that two additional proteins, AF6 and MUPP1, known to be associated with ZO-1 at tight and adherens junctions, are also components of neuronal gap junctions in rodent brain and directly interact with connexin36 (Cx36) that forms these junctions. Here, we show by immunofluorescence labeling that the cytoskeletal-associated protein cingulin, commonly found at tight junctions, is also localized at neuronal gap junctions throughout the central nervous system. In consideration of known functions related to ZO-1, AF6, MUPP1, and cingulin, our results provide a context in which to examine functional relationships between these proteins at Cx36-containing electrical synapses in brain—specifically, how they may contribute to regulation of transmission at these synapses, and how they may govern gap junction channel assembly and/or disassembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aijaz S, D’Atri F, Citi S, Balda MS, Matter K (2005) Binding of GEF-H1 to the tight junction-associated adaptor cingulin results in inhibition of Rho signaling and G1/S phase transition. Dev Cell 8:777–786

    PubMed  CAS  Google Scholar 

  • Akoyev V, Takemoto DJ (2007) ZO-1 is required for protein kinase C gamma-driven disassembly of connexin43. Cell Signal 19:958–967

    PubMed  CAS  Google Scholar 

  • Alev C, Urschel S, Sonntag S, Zoidl G, Fort AG, Höher T, Matsubara M, Willecke K, Spray DC, Dermietzel R (2008) The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with gluamate receptors. Proc Natl Acad Sci (USA) 105:20964–20969

    CAS  Google Scholar 

  • Baker R, Llinas R (1971) Electrotonic coupling between neurons in the rat mesencephalic nucleus. J Physio 212:45–63

    CAS  Google Scholar 

  • Baker SM, Kim N, Gumpert AM, Segretain D, Falk MM (2008) Acute internalization of gap junctions in vascular endothelial cells in response to inflammatory mediator-induced G-protein coupled receptor activation. FEBS Lett 582:4039–4046

    PubMed  CAS  Google Scholar 

  • Balasubramanian S, Fam SR, Hall RA (2007) GABAb receptor association with the PDZ scaffold MUPP1 alters receptor stability and function. J Biol Chem 282:4162–4171

    PubMed  CAS  Google Scholar 

  • Baude A, Bleasdale C, Dalezios Y, Somogyi P, Klausberger T (2007) Immunoreactivity for GABAa receptor alpha1 subunit, somatostatin and connexin36 distinguishes axoaxonic, basket and bistratified interneurons of the rat hippocampus. Cereb Cortex 17:2094–2107

    PubMed  Google Scholar 

  • Becamel C, Figgs A, Poliak S, Dumuis A, Peles E, Bockaert J, Lubbert H, Ullmer C (2001) Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1. J Biol Chem 276:12974–12982

    PubMed  CAS  Google Scholar 

  • Bennett MVL (1997) Gap junctions as electrical synapses. J Neurocytol 26:349–366

    PubMed  CAS  Google Scholar 

  • Bennett MVL, Zukin SR (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495–511

    PubMed  CAS  Google Scholar 

  • Boettner B, Govek EE, Cross J, Van Aelst L (2000) The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin. Proc Natl Acad Sci USA 97:9064–9069

    PubMed  CAS  Google Scholar 

  • Boettner B, Herrmann C, Van Aelst L (2001) Ras and Rap1 interaction with AF-6 effector target. Methods Enzymol 332:151–168

    PubMed  CAS  Google Scholar 

  • Boettner B, Harjes P, Ishimaru S, Heke M, Fan HQ, Qin Y, Van Aelst L, Gaul U (2003) The AF-6 homolog canoe acts as a Rap1 effector during dorsal closure of the Drosophila embryo. Genetics 165:159–169

    PubMed  CAS  Google Scholar 

  • Caron E (2003) Cellular functions of the Rap1 GTP-binding protein: a pattern emerges. J Cell Sci 116:435–440

    PubMed  CAS  Google Scholar 

  • Cepeda C, Walsh JP, Hull CD, Howard SG, Buchwald NA, Levine MS (1989) Dye-coupling in the neostriatum of the rat: I. Modulation by dopamine-depleting lesions. Synapse 4:229–237

    PubMed  CAS  Google Scholar 

  • Chai Z, Goodenough DA, Paul DL (2011) Cx50 requires an intact PDZ-binding motif and ZO-1 for the formation of functional intercellular channels. Mol Biol Cell 22:4503–4512

    PubMed  CAS  Google Scholar 

  • Christensen AE, Selheim F, De Rooij J, Dremier S, Schwede F, Dao KK, Martinez A, Maenhaut C, Bos JL, Genieser H-G, Doskenland SO (2003) cAMP analog mapping of Epac1 and cAMP kinase. J Biol Chem 278:35394–35402

    PubMed  CAS  Google Scholar 

  • Ciolofan C, Li X, Olson O, Kamasawa N, Yasumura T, Morita M, Rash JE, Nagy JI (2006) Association of Connexin36 and ZO-1 with ZO-2 and the MsY3 transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB) in mouse retina. Neuroscience 140:433–451

    PubMed  CAS  Google Scholar 

  • Citi S, Sabanay H, Kendrick-Jones J, Geiger B (1989) Cingulin: characterization and localization. J Cell Sci 93:107–122

    PubMed  CAS  Google Scholar 

  • Citi S, Paschoud S, Pulimeno P, Timolati F, De Robertis F, Jond L, Guillemot L (2009) The tight junction protein cingulin regulates gene expression and RhoA signaling. Ann NY Acad Sci 1165:88–98

    PubMed  CAS  Google Scholar 

  • Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418

    PubMed  CAS  Google Scholar 

  • Cordenonsi M, D’Atri F, Hammar E, Parry DA, Kendrick-Jones J, Shore D, Citi S (1999) Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J Cell Biol 147:1569–1582

    PubMed  CAS  Google Scholar 

  • Curti S, Hoge G, Nagy JI, Pereda A (2012a) Synergy between electrical coupling and membrane properties promotes strong synchronization of neurons of the mesencephalic trigeminal nucleus. J Neurosci 32:4341–4359

    PubMed  CAS  Google Scholar 

  • Curti S, Hoge G, Nagy JI, Pereda A (2012b) Electrical transmission between mammalian neurons is supported by a small fraction of gap junction channels. J Membrane Biol. doi:10.1007/s00232-012-9449-z

  • D’Atri F, Citi S (2001) Cingulin interacts with F-actin in vitro. FEBS Lett 507:21–24

    PubMed  Google Scholar 

  • D’Atri F, Nadalutti F, Citi S (2002) Evidence for a functional interaction between cingulin and ZO-1 in cultured cells. J Biol Chem 277:27757–27764

    PubMed  Google Scholar 

  • de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477

    PubMed  Google Scholar 

  • Derangeon M, Bourmeyster N, Plaisance I, Pinet-Charvet C, Chen Q, Duthe F, Popoff MR, Sarrouilhe D, Hervé JC (2008) RhoA GTPase and F-actin dynamically regulate the permeability of Cx43-made channels in rat cardiac myocytes. J Biol Chem 283:30754–30765

    PubMed  CAS  Google Scholar 

  • Derangeon M, Spray DC, Bourmeyster N, Sarrouilhe D, Herve JC (2009) Reciprocal influence of connexins and apical junction proteins on their expressions and functions. Biochim Biophys Acta 1788:768–778

    PubMed  CAS  Google Scholar 

  • Ebnet K, Suzuki A, Ohno S, Vestweber D (2004) Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci 117:19–29

    PubMed  CAS  Google Scholar 

  • Enserink JM, Christensen AE, de Rooij J, van Triest M, Schwede F, Genieser HG, Døskeland SO, Blank JL, Bos JL (2002) A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 4:901–906

    PubMed  CAS  Google Scholar 

  • Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753

    PubMed  CAS  Google Scholar 

  • Fanning AS, Ma TY, Anderson JM (2002) Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1. FASEB J 16:1835–1837

    PubMed  CAS  Google Scholar 

  • Flores CE, Li X, Bennett MVL, Nagy JI, Pereda AE (2008) Connexin35 and Zonula Occludens-1 directly interact: implications for the regulation of electrical transmission. Proc Natl Acad Sci USA 105:12545–12550

    PubMed  CAS  Google Scholar 

  • Flores CE, Nannapaneni S, Davidson KG, Yasumura T, Bennett MV, Rash JE, Pereda AE (2012) Trafficking of gap junction channels at a vertebrate electrical synapse in vivo. Proc Natl Acad Sci USA 109:E573–E582

    PubMed  CAS  Google Scholar 

  • Fuduka T, Kosaka T, Singer W, Galuske RAW (2006) Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J Neurosci 26:3434–3443

    Google Scholar 

  • Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog Biophys Mol Biol 81:1–44

    PubMed  CAS  Google Scholar 

  • Guillaume JL, Daulat AM, Maurice P, Levoye A, Migaud M, Brydon L, Malpaux B, Borg-Capra C, Jockers R (2008) The PDZ protein MUPP1 promotes Gi coupling and signaling of the Mt1 melatonin receptor. J Biol Chem 283:16762–16771

    PubMed  CAS  Google Scholar 

  • Guillemot L, Foglia A, Paschoud S, Pulimeno P, Citi S (2008) The cytoplasmic plaque of tight junctions: a scaffolding and signalling center. Biochim Biophys Acta 1778:601–613

    PubMed  CAS  Google Scholar 

  • Hampson ECGM, Vaney DI, Weiler R (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci 12:4911–4922

    PubMed  CAS  Google Scholar 

  • Hatton GI (1997) Function-related plasticity in hypothalamus. Ann Rev Neurosci 20:375–397

    PubMed  CAS  Google Scholar 

  • Hatton GI, Yang QZ (2001) Ionotropic histamine receptors and H2 receptors modulate supraoptic oxytocin neuronal excitability and dye coupling. J Neurosci 21:2974–2982

    PubMed  CAS  Google Scholar 

  • He S, Weiler R, Vaney DL (2000) Endogenous dopaminergic regulation of horizontal cell coupling in the mammalian retina. J Comp Neurol 418:33–40

    PubMed  CAS  Google Scholar 

  • Herve J-C, Derangeon M, Sarrouilhe D, Geipmans BNG, Bourmeyster N (2011) Gap junctional channels are parts of multiprotein complexes. Biochem Biophys Acta 1818:1844–1865

    Google Scholar 

  • Hinrichsen CF (1970) Coupling between cells of the trigeminal mesencephalic nucleus. J Dent Res 49(suppl):1369–1373

    PubMed  Google Scholar 

  • Hinrichsen CF, Larramendi LM (1970) The trigeminal mesencephalic nucleus. II. Electron microscopy. Am J Anat 127:303–319

    PubMed  CAS  Google Scholar 

  • Holz GG, Chepurny OG, Schwede F (2008) Epac-selective cAMP analogs; new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cell Signal 20:10–20

    PubMed  CAS  Google Scholar 

  • Hopkins WF, Johnston D (1988) Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus. J Neurophysiol 59:667–687

    PubMed  CAS  Google Scholar 

  • Hormuzdi SG, Filippov MA, Mitropoulon G, Monyer H, Bruzzone R (2004) Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochem Biophys Acta 1662:113–137

    PubMed  CAS  Google Scholar 

  • Hunter AW, Gourdie RG (2008) The second PDZ domain of zonula occludens-1 is dispensable for targeting to connexin 43 gap junctions. Cell Commun Adhes 15:55–63

    PubMed  CAS  Google Scholar 

  • Hunter AW, Barker RJ, Zhu C, Gourdie RG (2005) Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol Biol Cell 16:5686–5698

    PubMed  CAS  Google Scholar 

  • Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S (1999) Direct binding of three tight junction–associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 147:1351–1363

    PubMed  CAS  Google Scholar 

  • Jeansonne B, Lu Q, Goodenough DA, Chen YH (2003) Claudin-8 interacts with multi-PDZ domain protein 1 (MUPP1) and reduces paracellular conductions in epithelial cells. Cell Mol Biol 49:13–21

    PubMed  CAS  Google Scholar 

  • Kamasawa N, Furman CS, Davidson KGV, Sampson JA, Magnie AR, Gebhardt BR, Kamasawa M, Yasumura T, Zumbrunnen JR, Pickard GE, Nagy JI, Rash JE (2006) Abundance and ultrastructural diversity of neuronal gap junctions in the OFF and ON sublaminae of the inner plexiform layer of rat and mouse retina. Neuroscience 142:1093–1117

    PubMed  CAS  Google Scholar 

  • Kooistra MRH, Bube N, Bos JL (2006) Rap1: a key regulator in cell-cell junction formation. J Cell Sci 120:17–22

    Google Scholar 

  • Kothmann WW, Li X, Burr GS, O’Brien J (2007) Connexin 35/36 is phosphorylated at regulatory sites in the retina. Vis Neurosci 24:363–375

    PubMed  Google Scholar 

  • Krapivinsky G, Medina I, Krapininsky L, Gapon S, Clapham DE (2004) SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation. Neuron 43:563–574

    PubMed  CAS  Google Scholar 

  • Laing JG, Chou B, Steinberg TH (2005) ZO-1 alters the plasma membrane localization and function of Cx43 in osteoblastic cells. J Cell Sci 118:2167–2176

    PubMed  CAS  Google Scholar 

  • Landisman CE, Connors BW (2005) Long-term modulation of electrical synapses in the mammalian thalamus. Science 310:1809–1813

    PubMed  CAS  Google Scholar 

  • Li X, Olson C, Lu S, Kamasawa N, Yasumura T, Rash JE, Nagy JI (2004a) Neuronal connexin36 association with zonula occludens-1 protein (ZO-1) in mouse brain and interaction with the first PDZ domain of ZO-1. Eur J Neurosci 19:2132–2146

    PubMed  Google Scholar 

  • Li X, Olson C, Lu S, Nagy JI (2004b) Association of connexin36 with zonula occludens-1 in HeLa cells, βTC-3 cells, pancreas and adrenal gland. Histochem Cell Biol 122:485–498

    PubMed  CAS  Google Scholar 

  • Li X, Kamasawa N, Ciolofan C, Olson CO, Lu S, Davidson KGV, Yasumura T, Shigemoto R, Rash JE, Nagy JI (2008a) Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques, forming bi-homotypic gap junctions, with scaffolding contributed by zonula occludens-1. J Neurosci 28:9769–9789

    PubMed  CAS  Google Scholar 

  • Li X, Penes M, Odermatt B, Willecke K, Nagy JI (2008b) Ablation of Cx47 in transgenic mice leads to the loss of MUPP1, ZONAB and multiple connexins at oligodendrocyte-astrocyte gap junctions. Eur J Neurosci 28:1503–1517

    PubMed  Google Scholar 

  • Li X, Lu S, Nagy JI (2009) Direct association of connexin36 with zonula occludens-2 and zonula occludens-3. Neurochem Int 54:393–402

    PubMed  CAS  Google Scholar 

  • Li X, Lynn BD, Nagy JI (2012) The effector and scaffolding proteins AF6 and MUPP1 interact with connexin36 and localize at gap junctions that form electrical synapses in rodent brain. Eur J Neurosci 35:166–181

    PubMed  CAS  Google Scholar 

  • Liu X-B, Jones EG (2003) Fine structural localization of connexin36 immunoreactivity in mouse cerebral cortex and thalamus. J Comp Neurol 466:457–467

    PubMed  Google Scholar 

  • Llinas R, Baker R, Sotelo C (1974) Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol 37:560–571

    PubMed  CAS  Google Scholar 

  • Lorenowicz MJ, Fernandez-Borja M, Kooistra MRH, Bos JL, Hordijk PL (2008) PKA and Epac1 regulate endothelial integrity and migration through parallel and independent pathways. Eur J Cell Biol 87:779–792

    PubMed  CAS  Google Scholar 

  • Lorger M, Moelling K (2006) Regulation of epithelial wound closure and intercellular adhesion by interaction of AF6 with actin cytoskeleton. J Cell Sci 119:3385–3398

    PubMed  CAS  Google Scholar 

  • McCracken CB, Hamby SM, Patel KM, Morgan D, Vrana KE, Roberts DC (2005a) Extended cocaine self-administration and deprivation produces region-specific and time-dependent changes in connexin36 expression in rat brain. Synapse 58:141–150

    PubMed  CAS  Google Scholar 

  • McCracken CB, Patel KM, Vrana KE, Paul DL, Roberts DCS (2005b) Amphetamine withdrawal produces region-specific and time-dependent changes in connexin36 expression in rat brain. Synapse 56:39–44

    PubMed  CAS  Google Scholar 

  • Moreno AP, Lau AF (2007) Gap junction channel gating modulated through protein phosphorylation. Prog Biophys Mol Biol 94:107–119

    PubMed  CAS  Google Scholar 

  • Muller JF, Mascagni F, McDonald AJ (2005) Coupled networks of parvalbumin-immunoreactive interneurons in the rat basolateral amygdala. J Neurosci 25:7366–7376

    PubMed  CAS  Google Scholar 

  • Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Rev 47:191–215

    PubMed  CAS  Google Scholar 

  • Niessen CM, Gottardi CJ (2008) Molecular components of the adherens junction. Biochim Biophys Acta 1778:562–571

    PubMed  CAS  Google Scholar 

  • Ogita H, Takai Y (2006) Nectins and nectin-like molecules: roles in cell adhesion, polarization, movement, and proliferation. IUBMB Life 58:334–343

    PubMed  CAS  Google Scholar 

  • Onn SP, Grace AA (1994) Dye coupling between rat striatal neurons recorded in vivo: compartmental organization and modulation by dopamine. J Neurophysiol 71:1917–1934

    PubMed  CAS  Google Scholar 

  • Onn S-P, Grace AA (1995) Repeated treatment with haloperidol and clozapine exerts differential effects on dye coupling between neurons in subregions of striatum and nucleus accumbens. J Neurosci 15:7024–7036

    PubMed  CAS  Google Scholar 

  • Onn S-P, Grace AA (1999) Alterations in electrophysiological activity and dye coupling of striatal spiny and aspiny neurons in dopamine-denervated rat striatum recorded in vivo. Synapse 33:1–15

    PubMed  CAS  Google Scholar 

  • Onn S-P, West AR, Grace AA (2000) Dopamine-mediated regulation of striatal neuronal and network interactions. Trends Neurosci 23:S48–S56

    PubMed  CAS  Google Scholar 

  • Ouyang X, Winbow VM, Patel LS, Burr GS, Mitchell CK, O’Brien J (2005) Protein kinase A mediates regulation of gap junctions containing connexin35 through a complex pathway. Brain Res Mol Brain Res 135:1–11

    PubMed  CAS  Google Scholar 

  • Penes MC, Li X, Nagy JI (2005) Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain. Eur J Neurosci 22:404–418

    PubMed  Google Scholar 

  • Pereda AE, Bell TD, Chang BH, Czernik AJ, Nairn AC, Soderling TR, Faber DS (1998) Ca2+/calmodulin-dependent kinase II mediates simultaneous enhancement of gap-junctional conductance and glutamatergic transmission. Proc Natl Acad Sci USA 95:13272–13277

    PubMed  CAS  Google Scholar 

  • Perez Velazquez JL, Han D, Carlen PL (1997) Neurotransmitter modulation of gap junctional communication in the rat hippocampus. Eur J Neurosci 9:2522–2531

    Google Scholar 

  • Qu C, Gardner P, Schrijver I (2009) The role of the cytoskeleton in the formation of gap junctions by Connexin 30. Exp Cell Res 315:1683–1692

    PubMed  CAS  Google Scholar 

  • Rash JE, Staines WA, Yasumura T, Pate D, Hudson CS, Stelmack GL, Nagy JI (2000) Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin36 (Cx36) but not Cx32 or Cx43. Proc Natl Acad Sci USA 97:7573–7578

    PubMed  CAS  Google Scholar 

  • Rash JE, Olson CO, Pouliot WA, Davidson KGV, Yasumura T, Furman CS, Royer S, Kamasawa N, Nagy JI, Dudek FE (2007a) Connexin36, miniature neuronal gap junctions, and limited electrotonic coupling in rodent suprachiasmatic nucleus (SCN). Neuroscience 149:350–371

    PubMed  CAS  Google Scholar 

  • Rash JE, Olson CO, Davidson KGV, Yasumura T, Kamasawa N, Nagy JI (2007b) Identification of connexin36 in gap junctions between neurons in rodent locus coeruleus. Neuroscience 147:938–956

    PubMed  CAS  Google Scholar 

  • Rorig B, Sutor B (1996) Serotonin regulates gap junction coupling in the developing rat somatosensory cortex. Eur J Neurosci 8:1685–1695

    PubMed  CAS  Google Scholar 

  • Rorig B, Klausa G, Sutor B (1995) Dye coupling between pyramidal neurons in developing rat prefrontal and frontal cortex is reduced by protein kinase A activation and dopamine. J Neurosci 15:7386–7400

    PubMed  CAS  Google Scholar 

  • Schmitz D, Schuchmann S, Fisahn A, Draguhn A, Buhl EH, Petrasch-Parwez E, Dermietzel R, Heinemann U, Traub RD (2001) Axo-Axonal coupling: a novel mechanism of ultrafast neuronal communication. Neuron 31:831–840

    PubMed  CAS  Google Scholar 

  • Segretain D, Falk MM (2004) Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochem Biophys Acta 1662:3–21

    PubMed  CAS  Google Scholar 

  • Smyth JW, Vogan JM, Buch PJ, Zhang SS, Fong TS, Hong TT, Shaw RM (2012) Actin cytoskeleton rest stops regulate anterograde traffic of connexin 43 vesicles to the plasma membrane. Circ Res 2012 Epub ahead of print

  • Sohl G, Odermatt B, Maxeiner S, Degen J, Willecke K (2004) New insights into the expression and function of neural connexins with transgenic mouse mutants. Brain Res Rev 47:245–259

    PubMed  CAS  Google Scholar 

  • Sohl G, Maxeiner S, Willecke K (2005) Expresssion and functions of neuronal gap junctions. Nat Rev Neurosci 6:191–200

    PubMed  Google Scholar 

  • Somekawa S, Fukuhura S, Nakaoka Y, Fujita H, Saito Y, Mochizuki N (2005) Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes. Circ Res 97:655–662

    PubMed  CAS  Google Scholar 

  • Theiss C, Meller K (2002) Microinjected anti-actin antibodies decrease gap junctional intercellular commmunication in cultured astrocytes. Exp Cell Res 281:197–204

    PubMed  CAS  Google Scholar 

  • Ullmer C, Schmuck K, Figge A, Lubbert H (1998) Cloning and characterization of MUPP1, a novel PDZ domain protein. FEBS Lett 424:63–68

    PubMed  CAS  Google Scholar 

  • Umeda K, Kenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126:741–754

    PubMed  CAS  Google Scholar 

  • Urschel S, Hoher T, Schubert T, Alev C, Sohl G, Worsdorfer P, Asahara T, Dermietzel R, Weiler R, Willecke K (2006) Protein kinase A-mediated phosphorylation of connexin36 in mouse retina results in decreased gap junctional communication between AII amacrine cells. J Biol Chem 281:33163–33171

    PubMed  CAS  Google Scholar 

  • Utepbergenov DI, Fanning AS, Anderson JM (2006) Dimerization of the scaffolding protein ZO-1 through the second PDZ domain. J Biol Chem 281:24671–24677

    PubMed  CAS  Google Scholar 

  • Xia XB, Mills SL (2004) Gap junctional regulatory mechanisms in the AII amacrine cell of the rabbit retina. Vis Neurosci 21:791–805

    PubMed  Google Scholar 

  • Yamamoto T, Harada N, Kano K, Taya S-I, Canaani E, Matsuura Y, Mizoguchi A, Ide C, Kaibuchi K (1997) The ras target AF-6 interacts with ZO-1 and serves as a peripheral compoment of tight junctions in epithelial cells. J Cell Biol 139:785–795

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Harada N, Kawano Y, Taya S, Kaibuchi K (1999) In vivo interaction of AF-6 with activated ras and ZO-1. Biochem Biophys Res Commun 259:103–107

    PubMed  CAS  Google Scholar 

  • Yang QZ, Hatton GI (2002) Histamine H1-receptor modulation of inter-neuronal coupling among vasopressinergic neurons depends on nitric oxide synthase activation. Brain Res 955:115–122

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by grants from the Canadian Institutes of Health Research (MOP 106598) to J.I.N., and from the National Institutes of Health (NS31027, NS44010, NS44395) to J. E. Rash with a subaward to J.I.N. We thank B. McLean for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Nagy.

Additional information

B. D. Lynn and Xinbo Li contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynn, B.D., Li, X. & Nagy, J.I. Under Construction: Building the Macromolecular Superstructure and Signaling Components of an Electrical Synapse. J Membrane Biol 245, 303–317 (2012). https://doi.org/10.1007/s00232-012-9451-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9451-5

Keywords

Navigation