Skip to main content
Log in

Cx36 Is a Target of Beta2/NeuroD1, Which Associates with Prenatal Differentiation of Insulin-producing β Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The insulin-producing β cells of pancreatic islets are coupled by connexin36 (Cx36) channels. To investigate what controls the expression of this connexin, we have investigated its pattern during mouse pancreas development, and the influence of three transcription factors that are critical for β-cell development and differentiation. We show that (1) the Cx36 gene (Gjd2) is activated early in pancreas development and is markedly induced at the time of the surge of the transcription factors that determine β-cell differentiation; (2) the cognate protein is detected about a week later and is selectively expressed by β cells throughout the prenatal development of mouse pancreas; (3) a 2-kbp fragment of the Gjd2 promoter, which contains three E boxes for the binding of the bHLH factor Beta2/NeuroD1, ensures the expression of Cx36 by β cells; and (4) Beta2/NeuroD1 binds to these E boxes and, in the presence of the E47 ubiquitous cofactor, transactivates the Gjd2 promoter. The data identify Cx36 as a novel early marker of β cells and as a target of Beta2/NeuroD1, which is essential for β-cell development and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  • Aramata S, Han SI, Yasuda K, Kataoka K (2005) Synergistic activation of the insulin gene promoter by the beta-cell enriched transcription factors MafA, Beta2, and Pdx1. Biochim Biophys Acta 1730:41–46

    Article  PubMed  CAS  Google Scholar 

  • Berthoud VM, Singh R, Minogue PJ, Ragsdale CW, Beyer EC (2004) Highly restricted pattern of connexin36 expression in chick somite development. Anat Embryol 209:11–18

    Article  PubMed  CAS  Google Scholar 

  • Bosco D, Haefliger JA, Meda P (2011) Connexins: key mediators of endocrine function. Physiol Rev 91:1393–1445

    Article  PubMed  CAS  Google Scholar 

  • Carvalho CP, Barbosa HC, Britan A, Santos-Silva JC, Boschero AC, Meda P, Collares-Buzato CB (2010) Beta cell coupling and connexin expression change during the functional maturation of rat pancreatic islets. Diabetologia 53:1428–1437

    Article  PubMed  CAS  Google Scholar 

  • Carvalho CP, Oliveira RB, Britan A, Silva-Santos JC, Boschero AC, Meda P, Collares-Buzato CB (2012) Impaired beta-to-beta cell coupling mediated by Cx36 gap junctions in pre-diabetic mice. Am J Physiol Endocrinol Metab 302 (in press)

  • Cho JH, Tsai MJ (2004) The role of BETA2/NeuroD1 in the development of the nervous system. Mol Neurobiol 30:35–47

    Article  PubMed  CAS  Google Scholar 

  • Cina C, Bechberger JF, Ozog MA, Naus CC (2007) Expression of connexins in embryonic mouse neocortical development. J Comp Neurol 504:298–313

    Article  PubMed  CAS  Google Scholar 

  • Cummings DM, Yamazaki I, Cepeda C, Paul DL, Levine MS (2008) Neuronal coupling via connexin36 contributes to spontaneous synaptic currents of striatal medium-sized spiny neurons. J Neurosci Res 86:2147–2158

    Article  PubMed  CAS  Google Scholar 

  • Degen J, Meier C, Van Der Giessen RS, Sohl G, Petrasch-Parwez E, Urschel S, Dermietzel R, Schilling K, De Zeeuw CI, Willecke K (2004) Expression pattern of lacZ reporter gene representing connexin36 in transgenic mice. J Comp Neurol 473:511–525

    Article  PubMed  CAS  Google Scholar 

  • Docherty HM, Hay CW, Ferguson LA, Barrow J, Durward E, Docherty K (2005) Relative contribution of PDX-1, MafA and E47/beta2 to the regulation of the human insulin promoter. Biochem J 389:813–820

    Article  PubMed  CAS  Google Scholar 

  • Gulisano M, Parenti R, Spinella F, Cicirata F (2000) Cx36 is dynamically expressed during early development of mouse brain and nervous system. Neuroreport 11:3823–3828

    Article  PubMed  CAS  Google Scholar 

  • Habener JF, Kemp DM, Thomas MK (2005) Minireview: transcriptional regulation in pancreatic development. Endocrinology 146:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Head WS, Orseth ML, Nunemaker CS, Satin LS, Piston DW, Benninger RK (2012) Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse. Diabetes 61 (in press)

  • Henderson E, Stein R (1994) c-jun inhibits transcriptional activation by the insulin enhancer, and the insulin control element is the target of control. Mol Cell Biol 14:655–662

    PubMed  CAS  Google Scholar 

  • Herrera PL (2000) Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127:2317–2322

    PubMed  CAS  Google Scholar 

  • Hohl M, Thiel G (2005) Cell type-specific regulation of RE-1 silencing transcription factor (REST) target genes. Eur J Neurosci 22:2216–2230

    Article  PubMed  Google Scholar 

  • Itkin-Ansari P, Marcora E, Geron I, Tyrberg B, Demeterco C, Hao E, Padilla C, Ratineau C, Leiter A, Lee JE, Levine F (2005) NeuroD1 in the endocrine pancreas: localization and dual function as an activator and repressor. Dev Dyn 233:946–953

    Article  PubMed  CAS  Google Scholar 

  • Iwata I, Nagafuchi S, Nakashima H, Kondo S, Koga T, Yokogawa Y, Akashi T, Shibuya T, Umeno Y, Okeda T, Shibata S, Kono S, Yasunami M, Ohkubo H, Niho Y (1999) Association of polymorphism in the NeuroD/BETA2 gene with type 1 diabetes in the Japanese. Diabetes 48:416–419

    Article  PubMed  CAS  Google Scholar 

  • Jonsson J, Carlsson L, Edlund T, Edlund H (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371:606–609

    Article  PubMed  CAS  Google Scholar 

  • Kim SK, MacDonald RJ (2002) Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 12:540–547

    Article  PubMed  CAS  Google Scholar 

  • Kim JW, Seghers V, Cho JH, Kang Y, Kim S, Ryu Y, Baek K, Aguilar-Bryan L, Lee YD, Bryan J, Suh-Kim H (2002) Transactivation of the mouse sulfonylurea receptor I gene by BETA2/NeuroD. Mol Endocrinol 16:1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Klee P, Allagnat F, Pontes H, Cederroth M, Charollais A, Caille D, Britan A, Haefliger JA, Meda P (2011) Connexins protect mouse pancreatic β cells against apoptosis. J Clin Invest 121:4870–4879

    Article  PubMed  CAS  Google Scholar 

  • Le Gurun S, Martin D, Formenton A, Maechler P, Caille D, Waeber G, Meda P, Haefliger JA (2003) Connexin-36 contributes to control function of insulin-producing cells. J Biol Chem 278:37690–37697

    Article  PubMed  Google Scholar 

  • Lee JE (1997) NeuroD and neurogenesis. Dev Neurosci 19:27–32

    Article  PubMed  Google Scholar 

  • Lee JE, Hollenberg SM, Snider L, Turner DL, Lipnick N, Weintraub H (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268:836–884

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Pereira FA, Price SD, Chu MJ, Shope C, Himes D, Eatock RA, Brownell WE, Lysakowski A, Tsai MJ (2000) Essential role of Beta2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 14:2839–2854

    Article  PubMed  CAS  Google Scholar 

  • MacDonald MJ (2007) Synergistic potent insulin release by combinations of weak secretagogues in pancreatic islets and INS-1 cells. J Biol Chem 282:6043–6052

    Article  PubMed  CAS  Google Scholar 

  • MacDonald PE, Rorsman P (2007) The ins and outs of secretion from pancreatic beta-cells: control of single-vesicle exo- and endocytosis. Physiology (Bethesda) 22:113–121

    Article  CAS  Google Scholar 

  • Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, Orban T, Saad M, Warram JH, Montminy M, Krolewski AS (1999) Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet 23:323–328

    Article  PubMed  CAS  Google Scholar 

  • Malecki MT, Cyganek K, Klupa T, Sieradzki J (2003) The Ala45Thr polymorphism of Beta2/NeuroD1 gene and susceptibility to type 2 diabetes mellitus in a Polish population. Acta Diabetol 40:109–111

    PubMed  CAS  Google Scholar 

  • Martin D, Tawadros T, Meylan L, Abderrahmani A, Condorelli DF, Waeber G, Haefliger JA (2003) Critical role of the transcriptional repressor neuron-restrictive silencer factor in the specific control of connexin36 in insulin-producing cell lines. J Biol Chem 278:53082–53089

    Article  PubMed  CAS  Google Scholar 

  • Masternak K, Peyraud N, Krawczyk M, Barras E, Reith W (2003) Chromatin remodeling and extragenic transcription at the MHC class II locus control region. Nat Immunol 4:132–137

    Article  PubMed  CAS  Google Scholar 

  • Meda P (2012) The in vivo β-to-β-cell chat room: connexin connections matter. Diabetes 61 (in press)

  • Mirasierra M, Vallejo M (2006) The homeoprotein Alx3 expressed in pancreatic beta-cells regulates insulin gene transcription by interacting with the basic helix-loop-helix protein E47. Mol Endocrinol 20:2876–2889

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Maeda T, Lee JE (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 13:1647–1652

    Article  PubMed  CAS  Google Scholar 

  • Murtaugh LC (2007) Pancreas and beta-cell development: from the actual to the possible. Development 134:427–438

    Article  PubMed  CAS  Google Scholar 

  • Naya FJ, Stellrecht CM, Tsai MJ (1994) Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev 9:1009–1919

    Article  Google Scholar 

  • Naya FJ, Stellrecht CM, Tsai MJ (1995) Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev 9:1009–1019

    Article  PubMed  CAS  Google Scholar 

  • Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, Tsai MJ (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 11:2323–2334

    Article  PubMed  CAS  Google Scholar 

  • Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122:983–995

    PubMed  CAS  Google Scholar 

  • Pérez-Armendariz EM, Cruz-Miguel L, Coronel-Cruz C, Esparza-Aguilar M, Pinzon-Estrada E, Rancaño-Camacho E, Zacarias-Climaco G, Olivares PF, Espinosa AM, Becker I, Sáez JC, Berumen J, Pérez-Palacios G (2012) Connexin 36 is expressed in beta and connexins 26 and 32 in acinar cells at the end of the secondary transition of mouse pancreatic development and increase during fetal and perinatal life. Anat Rec 295:980–990

    Article  Google Scholar 

  • Pictet RL, Clark WR, Williams RH, Rutter WJ (1972) An ultrastructural analysis of the developing embryonic pancreas. Dev Biol 29:436–467

    Article  PubMed  CAS  Google Scholar 

  • Potolicchio I, Cigliola V, Velazquez-Garcia S, Klee P, Valjevac A, Kapic D, Cosovic E, Lepara O, Hadzovic-Dzuvo A, Mornjacovic Z, Meda P (2012) Connexin-dependent signaling in neuro-hormonal systems. Biochim Biophys Acta 1818:1919–1936

    Google Scholar 

  • Poulin G, Turgeon B, Drouin J (1997) NeuroD1/beta2 contributes to cell-specific transcription of the proopiomelanocortin gene. Mol Cell Biol 17:6673–6682

    PubMed  CAS  Google Scholar 

  • Qiu Y, Guo M, Huang S, Stein R (2002) Insulin gene transcription is mediated by interactions between the p300 coactivator and PDX-1, BETA2, and E47. Mol Cell Biol 22:412–420

    Article  PubMed  CAS  Google Scholar 

  • Ravier MA, Guldenagel M, Charollais A, Gjinovci A, Caille D, Sohl G, Wollheim CB, Willecke K, Henquin JC, Meda P (2005) Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54:1798–1807

    Article  PubMed  CAS  Google Scholar 

  • Robinson KA, Koepke JI, Kharodawala M, Lopes JM (2000) A network of yeast basic helix-loop-helix interactions. Nucleic Acids Res 28:4460–4466

    Article  PubMed  CAS  Google Scholar 

  • Serre-Beinier V, Le Gurun S, Belluardo N, Trovato-Salinaro A, Charollais A, Haefliger JA, Condorelli DF, Meda P (2000) Cx36 preferentially connects beta-cells within pancreatic islets. Diabetes 49:727–734

    Article  PubMed  CAS  Google Scholar 

  • Serre-Beinier V, Bosco D, Zulianello L, Charollais A, Caille D, Charpantier E, Gauthier BR, Diaferia GR, Giepmans BN, Lupi R, Marchetti P, Deng S, Buhler L, Berney T, Cirulli V, Meda P (2009) Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. Hum Mol Genet 18:428–439

    Article  PubMed  CAS  Google Scholar 

  • Sommer L, Ma Q, Anderson DJ (1996) Neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol Cell Neurosci 8:221–241

    Article  PubMed  CAS  Google Scholar 

  • Speier S, Gjinovci A, Charollais A, Meda P, Rupnik M (2007) Cx36-mediated coupling reduces beta-cell heterogeneity, confines the stimulating glucose concentration range, and affects insulin release kinetics. Diabetes 56:1078–1086

    Article  PubMed  CAS  Google Scholar 

  • Theis M, Mas C, Doring B, Degen J, Brink C, Caille D, Charollais A, Kruger O, Plum A, Nepote V, Herrera P, Meda P, Willecke K (2004) Replacement by a lacZ reporter gene assigns mouse connexin36, 45 and 43 to distinct cell types in pancreatic islets. Exp Cell Res 294:18–29

    Article  PubMed  CAS  Google Scholar 

  • Wellershaus K, Degen J, Deuchars J, Theis M, Charollais A, Caille D, Gauthier B, Janssen-Bienhold U, Sonntag S, Herrera P, Meda P, Willecke K (2008) A new conditional mouse mutant reveals specific expression and functions of connexin36 in neurons and pancreatic beta-cells. Exp Cell Res 314:997–1012

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Motohashi Y, Yanagawa T, Maruyama T, Kasuga A, Hirose H, Matsubara K, Shimada A, Saruta T (2001) NeuroD/beta2 gene G→A polymorphism may affect onset pattern of type 1 diabetes in Japanese. Diabetes Care 24:1438–1441

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Moriguchi T, Kajihara M, Esaki R, Harada A, Shimohata H, Oishi H, Hamada M, Morito N, Hasegawa K, Kudo T, Engel JD, Yamamoto M, Takahashi S (2005) MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol 25:4969–4976

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our team is supported by Grants from the Swiss National Science Foundation (310000-141162, IZ73Z0_127935, CR32I3_129987), the Juvenile Diabetes Research Foundation (40-2011-11, 5-2012-281), and the European Union (BETAIMAGE 222980; IMIDIA C2008-T7, BETATRAIN 289932). We are pleased to dedicate this study to Ross G. Johnson on occasion of the starting of his new life. Ross has been a pioneer in our field, a passionate and influential scholar, and a much appreciated host while Paolo was striving in snowy Minneapolis. We wish him all the best for a new exciting adventure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Meda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nlend, R.N., Aït-Lounis, A., Allagnat, F. et al. Cx36 Is a Target of Beta2/NeuroD1, Which Associates with Prenatal Differentiation of Insulin-producing β Cells. J Membrane Biol 245, 263–273 (2012). https://doi.org/10.1007/s00232-012-9447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9447-1

Keywords

Navigation