Skip to main content
Log in

Na+,K+-ATPase Activity in the Posterior Gills of the Blue Crab, Callinectes ornatus (Decapoda, Brachyura): Modulation of ATP Hydrolysis by the Biogenic Amines Spermidine and Spermine

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We investigated the effect of the exogenous polyamines spermine, spermidine and putrescine on modulation by ATP, K+, Na+, NH4 + and Mg2+ and on inhibition by ouabain of posterior gill microsomal Na+,K+-ATPase activity in the blue crab, Callinectes ornatus, acclimated to a dilute medium (21‰ salinity). This is the first kinetic demonstration of competition between spermine and spermidine for the cation sites of a crustacean Na+,K+-ATPase. Polyamine inhibition is enhanced at low cation concentrations: spermidine almost completely inhibited total ATPase activity, while spermine inhibition attained 58%; putrescine had a negligible effect on Na+,K+-ATPase activity. Spermine and spermidine affected both V and K for ATP hydrolysis but did not affect ouabain-insensitive ATPase activity. ATP hydrolysis in the absence of spermine and spermidine obeyed Michaelis–Menten behavior, in contrast to the cooperative kinetics seen for both polyamines. Modulation of V and K by K+, Na+, NH4 + and Mg2+ varied considerably in the presence of spermine and spermidine. These findings suggest that polyamine inhibition of Na+,K+-ATPase activity may be of physiological relevance to crustaceans that occupy habitats of variable salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101

    Article  PubMed  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Brues TC (1927) Occurrence of the marine crabs Callinectes ornatus, in brackish and freshwater. Am Nat 61:566–568

    Article  Google Scholar 

  • Choo PSTK, Smith TK, Cho CY, Ferguson HW (1991) Dietary excess of leucine influence growth and body composition of rainbow trout. J Nutr 121:1932–1939

    PubMed  CAS  Google Scholar 

  • Freire CA, Onken H, McNamara JC (2008) A structure–function analysis of ion transport in crustacean gills and excretory organs. Comp Biochem Physiol A Mol Integr Physiol 151:272–304

    Article  PubMed  Google Scholar 

  • Furriel RPM, McNamara JC, Leone FA (2000) Characterization of Na+,K+-ATPase in gill microsomes of the freshwater shrimp Macrobrachium olfersii. Comp Biochem Physiol B Biochem Mol Biol 126:303–315

    Article  PubMed  CAS  Google Scholar 

  • Furriel RPM, Masui DC, McNamara JC, Leone FA (2004) Modulation of gill Na+,K+-ATPase activity by ammonium ions: putative coupling of nitrogen excretion and ion uptake in the freshwater shrimp Macrobrachium olfersii. J Exp Zool A Comp Exp Biol 301:63–74

    Article  PubMed  Google Scholar 

  • Garçon DP, Masui DC, Mantelatto FLM, McNamara JC, Furriel RPM, Leone FA (2007) K+ and NH4 + modulate gill Na+,K+-ATPase activity in the blue crab, Callinectes ornatus: fine tuning of ammonia excretion. Comp Biochem Physiol A Mol Integr Physiol 147:145–155

    Article  PubMed  Google Scholar 

  • Garçon DP, Masui DC, Mantelatto FLM, Furriel RPM, McNamara JC, Leone FA (2009) Hemolymph ionic regulation and adjustments in gill Na+,K+-ATPase activity during salinity acclimation in the swimming crab Callinectes ornatus (Decapoda, Brachyura). Comp Biochem Physiol A Mol Integr Physiol 154:44–55

    Article  PubMed  Google Scholar 

  • Genovese G, Luchetti CG, Luquet CM (2004) Na+,K+-ATPase activity and gill ultrastructure in the hyper-hypo-regulating crab Chasmagnathus granulatus acclimated to dilute, normal, and concentrated seawater. Mar Biol 144:111–118

    Article  CAS  Google Scholar 

  • Glynn IM (1993) All hands to the sodium-pump. J Physiol 462:1–30

    PubMed  CAS  Google Scholar 

  • Gonçalves RR, Masui DC, McNamara JC, Mantelatto FLM, Garcon DP, Furriel RPM, Leone FA (2006) A kinetic study of the gill Na+,K+-ATPase and its role in ammonia excretion in the intertidal hermit crab, Clibanarius vittatus. Comp Biochem Physiol A Mol Integr Physiol 145:346–356

    Article  PubMed  Google Scholar 

  • Haefner A Jr (1990) Natural diet of Callinectes ornatus (Brachyura: Portunidae) in Bermuda. J Crustac Biol 10:36–246

    Article  Google Scholar 

  • Holliday CW (1985) Na+,K+-ATPase activity and hypoosmoregulation in the brine shrimp, Artemia salina. Am Zool 25:A138–A138

    Google Scholar 

  • Iarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51

    Article  Google Scholar 

  • Janne J, Alhone L, Leinonen P (1991) Polyamines: from molecular biology to clinical application. Ann Med 23:241–259

    Article  PubMed  CAS  Google Scholar 

  • Jantaro S, Maenpaa P, Mulo P, Incharoensakdi A (2003) Content and biosynthesis of polyamines in salt and osmotically stressed cells of Synechocystis sp. PCC 6803. FEMS Microbiol Lett 228:129–135

    Article  PubMed  CAS  Google Scholar 

  • Jayasundara N, Towle DW, Weihrauch D, Spanings-Pierrot C (2007) Gill-specific transcriptional regulation of Na+/K+-ATPase α-subunit in the euryhaline shore crab Pachygrapsus marmoratus: sequence variants and promoter structure. J Exp Biol 210:2070–2081

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen PL, Pedersen PA (2001) Structure–function relationships of Na+, K+, ATP, or Mg2 + binding and energy transduction in Na+,K+-ATPase. Biochim Biophys Acta 1505:57–74

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen PL, Nielsen JM, Rasmussen JH, Pedersen PA (1998) Structure–function relationships of E-1–E-2 transitions and cation binding in Na, K-pump protein. Biochim Biophys Acta 1365:65–70

    Article  PubMed  CAS  Google Scholar 

  • Kalac P (2009) Recent advances in the research on biological roles of dietary polyamines in man. J Appl Biomed 7:65–74

    CAS  Google Scholar 

  • Kaplan JH (2002) Biochemistry of Na+,K+-ATPase. Annu Rev Biochem 71:511–535

    Article  PubMed  CAS  Google Scholar 

  • Kirschner LB (2004) The mechanism of sodium chloride uptake in hyperregulating aquatic animals. J Exp Biol 207:1439–1452

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy R, Bhagwat KA (1989) Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol 91:500–504

    Article  PubMed  CAS  Google Scholar 

  • Lee KJ, Watts SA (1994) Specific activity of NA+,K+-ATPase is not altered in response to changing salinities during early development of the brine shrimp Artemia franciscana. Physiol Zool 67:910–924

    CAS  Google Scholar 

  • Leone FA, Baranauskas JA, Furriel RPM, Borin IA (2005) SigrafW: an easy-to-use program for fitting enzyme kinetic data. Biochem Mol Biol Educ 33:399–403

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Fenn E, Veenstra RD (2006) An amino terminal lysine residue of rat connexin40 that is required for spermine block. J Physiol 570:251–269

    PubMed  CAS  Google Scholar 

  • Lovett DL, Watts SA (1995) Changes in polyamine levels in response to acclimation salinity in gills of the blue-crab Callinectes-sapidus rathbun. Comp Biochem Physiol B Biochem Mol Biol 115:115–119

    Article  Google Scholar 

  • Lucu C, Flik G (1999) Na+-K+-ATPase and Na+/Ca2+ exchange activities in gills of hyperregulating Carcinus maenas. Am J Physiol Regul Integr Comp Physiol 276:R490–R499

    CAS  Google Scholar 

  • Lucu C, Towle DW (2003) Na+K+-ATPase in gills of aquatic crustacea. Comp Biochem Physiol A Mol Integr Physiol 135:195–214

    Article  PubMed  Google Scholar 

  • Luquet CM, Weihrauch D, Senek M, Towle DW (2005) Induction of branchial ion transporter mRNA expression during acclimation to salinity change in the euryhaline crab Chasmagnathus granulatus. J Exp Biol 208:3627–3636

    Article  PubMed  CAS  Google Scholar 

  • Mallery CH (1983) A carrier enzyme basis for ammonium excretion in teleost gill-NH4 + stimulated Na+-dependent ATPase activity in Opsanus beta. Comp Biochem Physiol A Mol Integr Physiol 74:880–897

    Google Scholar 

  • Mañanes AAL, Meligeni CD, Goldemberg AL (2002) Response to environmental salinity of Na+–K+ATPase activity in individual gills of the euryhaline crab Cyrtograpsus angulatus. J Exp Mar Biol Ecol 274:75–85

    Article  Google Scholar 

  • Mantel LH, Farmer LL (1983) Osmotic and ion regulation. In: Mantel LH, Bliss DE (eds) The biology of crustacea. International anatomy and regulation, vol 5. Academic Press, New York, pp 53–161

    Google Scholar 

  • Mantelatto FLM, Christofoletti RA (2001) Natural feeding activity of the crab Callinectes ornatus (Portunidae) in Ubatuba Bay (Sao Paulo, Brazil): influence of season, sex, size and molt stage. Mar Biol 138:585–594

    Article  Google Scholar 

  • Mantelatto FLM, Fransozo A (1999) Characterization of the physical and chemical parameters of Ubatuba Bay, northern coast of Sao Paulo State, Brazil. Rev Bras Biol 59:23–31

    Article  Google Scholar 

  • Mantelatto FLM, Fransozo A (2000) Brachyuran community in Ubatuba Bay, northern coast of Sao Paulo State, Brazil. J Shellfish Res 19:701–709

    Google Scholar 

  • Marks MJ, Seeds NW (1978) A heterogeneous ouabain–ATPase interaction in mouse brain. Life Sci 23:2735–2744

    Article  PubMed  CAS  Google Scholar 

  • Martin DW (2005) Structure–function relationships in the Na+,K+-pump. Semin Nephrol 25:282–291

    Article  PubMed  CAS  Google Scholar 

  • Masui DC, Furriel RPM, McNamara JC, Mantelatto FLM, Leone FA (2002) Modulation by ammonium ions of gill microsomal (Na+,K+)-ATPase in the swimming crab Callinectes danae: a possible mechanism for regulation of ammonia excretion. Comp Biochem Physiol C Toxicol Pharmacol 132:471–482

    Article  PubMed  CAS  Google Scholar 

  • Masui DC, Furriel RPM, Silva ECC, Mantelatto FLM, McNamara JC, Barrabin H, Scofano HM, Fontes CFL, Leone FA (2005) Gill microsomal (Na+,K+)-ATPase from the blue crab Callinectes danae: interactions at cationic sites. Int J Biochem Cell Biol 37:2521–2535

    Article  PubMed  CAS  Google Scholar 

  • Morris S (2001) Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. J Exp Biol 204:979–989

    PubMed  CAS  Google Scholar 

  • Onken H, Riestenpatt S (1998) NaCl absorption across split gill lamellae of hyperregulating crabs, transport mechanisms and their regulation. Comp Biochem Physiol A Mol Integr Physiol 119:883–893

    Article  Google Scholar 

  • Pedersen PL (2007) Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease. J Bioenerg Biomembr 39:349–355

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB Life 61:880–894

    Article  PubMed  CAS  Google Scholar 

  • Péqueux A (1995) Osmotic regulation in crustaceans. J Crustac Biol 15:1–60

    Article  Google Scholar 

  • Péqueux A, LaBras P, Cann-Moisan C, Coroff J, Sebert P (2002) Polyamines, indolamines, and catecholamines in gills and haemolymph of the euryhaline crab, Eriocheir sinensis. Effects of high pressure and salinity. Crustaceana 75:567–578

    Article  Google Scholar 

  • Pilotelle-Bunner A, Cornelius F, Sebban P, Kuchel PW, Clarke RJ (2009) Mechanism of Mg2 + binding in the Na+,K+-ATPase. Biophys J 96:3753–3761

    Article  PubMed  CAS  Google Scholar 

  • Pressley TA (1992) Ionic regulation of Na+-ATPase, K+-ATPase expression. Semin Nephrol 12:67–71

    PubMed  CAS  Google Scholar 

  • Read SM, Northcote DH (1981) Minimization of variation in the response to different proteins of the Coomassie blue-g dye-binding assay for protein. Anal Biochem 116:53–64

    Article  PubMed  CAS  Google Scholar 

  • Rebelo MF, Santos EA, Monserrat JM (1999) Ammonia exposure of Chasmagnathus granulata (Crustacea, Decapoda) Dana, 851. Accumulation in haemolymph and effects on osmoregulation. Comp Biochem Physiol A Mol Integr Physiol 122:429–435

    Article  Google Scholar 

  • Robinson JW (1970) Difference in sensitivity to cardiac steroids of (Na+K+)-stimulated ATPase and amino acid transport in intestinal mucosa of rat and other species. J Physiol 206:41–60

    PubMed  CAS  Google Scholar 

  • Robinson JD, Pratap PR (1991) (NA+K+)-ATPase—modes of inhibition by Mg2+. Biochim Biophys Acta 1061:267–278

    Article  PubMed  CAS  Google Scholar 

  • Robinson JD, Leach CA, Robinson LJ (1986) Cation sites, spermine, and the reaction sequence of the (NA+K+)-dependent ATPase. Biochim Biophys Acta 856:536–544

    Article  PubMed  CAS  Google Scholar 

  • Rudolph FB, Baugher BW, Beissner RS (1979) Techniques in coupled enzyme assays. Methods Enzymol 63:22–42

    Article  PubMed  CAS  Google Scholar 

  • Santos LCF, Belli NM, Augusto A, Masui DC, Leone FA, McNamara JC, Furriel RPM (2007) Gill Na+, K+-ATPase in diadromous, freshwater palaemonid shrimps: species-specific kinetic characteristics and alpha-subunit expression. Comp Biochem Physiol A Mol Integr Physiol 148:178–188

    Article  PubMed  CAS  Google Scholar 

  • Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 293:C509–C536

    Article  PubMed  CAS  Google Scholar 

  • Silva ECC, Masui DC, Furriel RPM, Mantelatto FLM, McNamara JC, Barrabin H, Leone FA, Scofano HM, Fontes CFL (2008) Regulation by the exogenous polyamine spermidine of Na, K-ATPase activity from the gills of the euryhaline swimming crab Callinectes danae (Brachyura, Portunidae). Comp Biochem Physiol B Biochem Mol Biol 149:622–629

    Article  PubMed  CAS  Google Scholar 

  • Skou JC (1960) Further investigations on a Mg2+ + Na+-activated adenosinetriphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane. Biochim Biophys Acta 42:6–23

    Article  CAS  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  PubMed  CAS  Google Scholar 

  • Tassoni A, Antognoni F, Bagni N (1996) Polyamine binding to plasma membrane vesicle isolated from zucchini hypocotyls. Plant Physiol 110:817–824

    PubMed  CAS  Google Scholar 

  • Toner M, Vaio G, McLaughlin A, McLaughlin S (1988) Adsorption of cations to phosphatidylinositol 4,5-biphosphate. Biochemistry 27:7435–7443

    Article  PubMed  CAS  Google Scholar 

  • Towle DW, Holleland T (1987) Ammonium ion substitutes for K+ in ATP-dependent Na+ transport by basolateral membrane-vesicles. Am J Physiol Regul Integr Comp Physiol 252:R479–R489

    CAS  Google Scholar 

  • Towle DW, Weihrauch D (2001) Osmoregulation by gills of euryhaline crabs: molecular analysis of transporters 1. Am Zool 41:770–780

    Article  CAS  Google Scholar 

  • Wall SM (1996) NH4 + augments net acid secretion by a ouabain-sensitive mechanism in isolated perfused inner medullary collecting ducts. Am J Physiol Renal Physiol 39:F432–F439

    Google Scholar 

  • Waters S, Khamis M, von der Decken A (1992) Polyamines in liver and their influence on chromatin condensation after 17-beta estradiol treatment of Atlantic salmon. Mol Cell Biochem 109:17–24

    Article  PubMed  CAS  Google Scholar 

  • Watts SA, Lee KJ, Cline GB (1994) Elevated ornithine decarboxylase activity and polyamine levels during early development in the brine shrimp Artemia franciscana. J Exp Zool 270:426–431

    Article  CAS  Google Scholar 

  • Weihrauch D, Becker W, Postel U, Riestenpatt S, Siebers D (1998) Active excretion of ammonia across the gills of the shore crab Carcinus maenas and its relation to osmoregulatory ion uptake [B]. J Comp Physiol 168:364–376

    Article  CAS  Google Scholar 

  • Weihrauch D, Becker W, Postel U, Luck-Kopp S, Siebers D (1999) Potential of active excretion of ammonia in three different haline species of crabs [B]. J Comp Physiol 169:25–37

    Article  CAS  Google Scholar 

  • Weihrauch D, Morris S, Towle DW (2004) Ammonia excretion in aquatic and terrestrial crabs. J Exp Biol 207:4491–4504

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Grossenbacher D, Gehring H (2007) New transition state-based inhibitor for human ornithine decarboxylase inhibits growth of tumor cells. Mol Cancer Ther 6:1831–1839

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work constitutes part of a PhD thesis by D. P. G., financed by research grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Instituto Nacional de Ciência e Tecnologia (INCT) Adapta/Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM, grant 573976/2008-2). F. A. L., C. F. L. F. and J. C. M. received research scholarships from CNPq. D. P. G. received a postdoctoral scholarship from FAPESP, and M. N. L. and J. L. F. received research scholarships from CNPq. All experiments conducted in this study complied with currently applicable state and federal laws. We thank Nilton Rosa Alves for technical assistance. This laboratory (F. A. L.) is integrated with the Amazon Shrimp Network (Rede de Camarão da Amazônia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Leone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garçon, D.P., Lucena, M.N., França, J.L. et al. Na+,K+-ATPase Activity in the Posterior Gills of the Blue Crab, Callinectes ornatus (Decapoda, Brachyura): Modulation of ATP Hydrolysis by the Biogenic Amines Spermidine and Spermine. J Membrane Biol 244, 9–20 (2011). https://doi.org/10.1007/s00232-011-9391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-011-9391-5

Keywords

Navigation