Skip to main content
Log in

Bioinformatic Characterization of the Trimeric Intracellular Cation-Specific Channel Protein Family

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Trimeric intracellular cation-specific (TRIC) channels are integral to muscle excitation–contraction coupling. TRIC channels provide counter-ionic flux when calcium is rapidly transported from intracellular stores to the cell cytoplasm. Until recently, knowledge of the presence of these proteins was limited to animals. We analyzed the TRIC family and identified a profusion of prokaryotic family members with topologies and motifs similar to those of their eukaryotic counterparts. Prokaryotic members far outnumber eukaryotic members, and although none has been functionally characterized, the evidence suggests that they function as secondary carriers. The presence of fused N- or C-terminal domains of known biochemical functions as well as genomic context analyses provide clues about the functions of these prokaryotic homologs. They are proposed to function in metabolite (e.g., amino acid/nucleotide) efflux. Phylogenetic analysis revealed that TRIC channel homologs diverged relatively early during evolutionary history and that horizontal gene transfer was frequent in prokaryotes but not in eukaryotes. Topological analyses of TRIC channels revealed that these proteins possess seven putative transmembrane segments (TMSs), which arose by intragenic duplication of a three-TMS polypeptide-encoding genetic element followed by addition of a seventh TMS at the C terminus to give the precursor of all current TRIC family homologs. We propose that this family arose in prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Au KM, Barabote RD, Hu KY, Saier MH Jr (2006) Evolutionary appearance of H+-translocating pyrophosphatases. Microbiology 152:1243–1247

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Syst Mol Biol 3:21–29

    CAS  Google Scholar 

  • Chan H, Babayan V, Blyumin E, Gandhi C, Hak K, Harake D, Kumar K, Lee P, Li TT, Liu HY, Lo TCT, Meyer CJ, Stanford S, Zamora KS, Saier MH Jr (2010) The P-type ATPase superfamily. J Mol Microbiol Biotechnol 19:5–104

    Article  PubMed  CAS  Google Scholar 

  • Chung YJ, Krueger C, Metzgar D, Saier MH Jr (2001) Size comparisons among integral membrane transport protein homologues in Bacteria, Archaea, and Eucarya. J Bacteriol 183:1012–1021

    Article  PubMed  CAS  Google Scholar 

  • Coronado R, Miller C (1980) Decamethonium and hexamethonium block K+ channels of sarcoplasmic reticulum. Nature 288:495–497

    Article  PubMed  CAS  Google Scholar 

  • Courties C, Vaquer A, Troussellier M, Lautier J, Chrétiennot-Dinet MJ, Neveux J, Machado C, Claustre H (1994) Smallest eukaryotic organism. Nature 370:255

    Article  Google Scholar 

  • Cowan SW, Schirmer T, Rummer G, Steiert M, Ghosh R, Pauptit RA, Jansonius JN, Rosenbusch JP (1992) Crystal structures explain functional properties of two E. coli porins. Nature 358:727–733

    Article  PubMed  CAS  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynié S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piégu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652

    Article  PubMed  CAS  Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Article  PubMed  CAS  Google Scholar 

  • Doolittle RF (1981) Similar amino acid sequences: chance or common ancestry? Science 214:149–159

    Article  PubMed  CAS  Google Scholar 

  • Doolittle RF (1986) Of urfs and orfs: a primer on how to analyze derived amino acid sequences. University Science Books, Mill Valley, CA

    Google Scholar 

  • Eddy SR (1998) Multiple alignment and multiple sequence based searches. http://selab.janelia.org/publications/Eddy98b/Eddy98b-preprint.pdf

  • Eddy SR (2008) A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PloS Comput Biol 4:e1000069

    Article  PubMed  Google Scholar 

  • Fink RH, Stephenson DG (1987) Ca2+ movements in muscle modulated by the state of K+-channels in the sarcoplasmic reticulum membranes. Pflugers Arch 409:374–380

    Article  PubMed  CAS  Google Scholar 

  • Gadsby DC (2009) Ion channels versus ion pumps: the principal difference, in principle. Nat Rev Mol Cell Biol 10:344–352

    Article  PubMed  CAS  Google Scholar 

  • Gafvelin G, Sakaguchi M, Andersson H, von Heijne G (1997) Topological rules for membrane protein assembly in eukaryotic cells. J Biol Chem 272:6119–6127

    Article  PubMed  CAS  Google Scholar 

  • Gophna U, Thompson JR, Boucher Y, Doolittle WF (2006) Complex histories of genes encoding 3-hydroxy-3-methylglutaryl-coenzymeA reductase. Mol Biol Evol 23:168–178

    Article  PubMed  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Kuan G, Saier MH Jr (1994) Phylogenetic relationships among bacteriorhodopsins. Res Microbiol 145:273–285

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Gray MW, Burger G (1999) Mitochondrial gene evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397

    Article  PubMed  CAS  Google Scholar 

  • Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3:e130

    Article  PubMed  Google Scholar 

  • Matias MG, Gomolplitinant KM, Tamang DG, Saier MH Jr (2010) Animal Ca2+ release-activated Ca2+ (CRAC) channels appear to be homologous to and derived from the ubiquitous cation diffusion facilitators. BMC Res Notes 3:158

    Article  PubMed  Google Scholar 

  • Meissner G (1994) Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol 56:485–508

    Article  PubMed  CAS  Google Scholar 

  • Mio K, Kubo Y, Ogura T, Yamamoto T, Sato C (2005) Visualization of the trimeric P2X2 receptor with a crown-capped extracellular domain. Biochem Biophys Res Commun 337:998–1005

    Article  PubMed  CAS  Google Scholar 

  • Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Rückert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702

    Article  PubMed  CAS  Google Scholar 

  • Pitt SJ, Park KH, Nishi M, Urashima T, Aoki S, Yamazaki D, Ma J, Takeshima H, Sitsapesan R (2010) Charade of the SR K+-channel: two ion-channels, TRIC-A and TRIC-B, masquerade as a single K+-channel. Biophys J 99:417–426

    Article  PubMed  CAS  Google Scholar 

  • Rios E, Ma JJ, Gonzalez A (1991) The mechanical hypothesis of excitation–contraction (EC) coupling in skeletal muscle. J Muscle Res Cell Motil 12:127–135

    Article  PubMed  CAS  Google Scholar 

  • Rios E, Pizarro G, Stefani E (1992) Charge movement and the nature of signal transduction in skeletal muscle excitation–contraction coupling. Annu Rev Physiol 54:109–133

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr (1994) Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58:71–93

    PubMed  CAS  Google Scholar 

  • Saier MH Jr (2003a) Answering fundamental questions in biology with bioinformatics. ASM News 69:175–180

    Google Scholar 

  • Saier MH Jr (2003b) Tracing pathways of transport protein evolution. Mol Microbiol 48:1145–1156

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr, Yen MR, Noto K, Tamang DG, Elkan C (2009) The transporter classification database: recent advances. Nucleic Acids Res 37:D274–D278

    Article  PubMed  CAS  Google Scholar 

  • Schneider MF (1994) Control of calcium release in functioning skeletal muscle fibers. Annu Rev Physiol 54:463–484

    Article  Google Scholar 

  • Smets BF, Barkay R (2005) Horizontal gene transfer: perspectives at a crossroads of scientific disciplines. Nat Rev Microbiol 3:675–678

    Article  PubMed  CAS  Google Scholar 

  • Takeshima H, Komazaki S, Hirose K, Nishi M, Noda T, Iino M (1998) Embryonic lethality and abnormal cardiac myocytes in mice lacking ryanodine receptor type 2. EMBO J 17:3309–3316

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tusnády GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506

    Article  PubMed  Google Scholar 

  • Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  PubMed  Google Scholar 

  • von Heijne G (1986) The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J 5:3021–3027

    PubMed  CAS  Google Scholar 

  • von Heijne G (1992) Membrane protein structure prediction: hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494

    Article  Google Scholar 

  • Wang B, Dukarevich M, Sun EI, Yen MR, Saier MH Jr (2009) Membrane porters of ATP-binding cassette transport systems are polyhyletic. J Membr Biol 1:1–10

    Article  Google Scholar 

  • Weisleder N, Takeshima H, Ma J (2008) Immuno-proteomic approach to excitation–contraction coupling in skeletal and cardiac muscle: molecular insights revealed by the mitsugumins. Cell Calcium 43:1–8

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97:8392–8396

    Article  PubMed  CAS  Google Scholar 

  • Wong T, Amidi A, Dodds A, Siddiqi S, Wang J, Yep T, Tamang DG, Saier MH Jr (2007) Evolution of the bacterial flagellum. Microbe 2:335–340

    Google Scholar 

  • Yamazaki D, Komazaki S, Nakanishi H, Mishima A, Nishi M, Yazawa M, Yamazaki T, Taguchi R, Takeshima H (2009a) Essential role of the TRIC-B channel in Ca2+ handling of alveolar epithelial cells and in perinatal lung maturation. Development 136:2355–2361

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki D, Yamazaki T, Takeshima H (2009b) Physiological functions of TRIC channels. Seikagaku 81:1004–1008

    PubMed  CAS  Google Scholar 

  • Yazawa M, Ferrante C, Feng J, Mio K, Ogura T, Zhang M, Lin P-H, Pan Z, Komazaki S, Kato K, Nishi M, Zhao X, Weisleder N, Sato C, Ma J, Takeshima H (2007) TRIC channels are essential for Ca2+ handling in intracellular stores. Nature 448:78–83

    Article  PubMed  CAS  Google Scholar 

  • Yen MR, Choi J, Saier MH Jr (2009) Bioinformatic analyses of transmembrane transport: novel software for deducing protein phylogeny, topology, and evolution. J Mol Microbiol Biotechnol 17:163–176

    Article  PubMed  CAS  Google Scholar 

  • Zhai Y, Saier MH Jr (2001a) A Web-based program (WHAT) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence. J Mol Microbiol Biotechnol 3:501–502

    PubMed  CAS  Google Scholar 

  • Zhai Y, Saier MH Jr (2001b) A Web-based program for the prediction of average hydropathy, average amphipathicity and average similarity of multiply aligned homologous proteins. J Mol Microbiol Biotechnol 3:285–286

    PubMed  CAS  Google Scholar 

  • Zhai Y, Saier MH Jr (2002) A simple sensitive program for detecting internal repeats in sets of multiply aligned homologous proteins. J Mol Microbiol Biotechnol 4:375–377

    PubMed  CAS  Google Scholar 

  • Zhai Y, Heijne WH, Smith DW, Saier MH Jr (2001) Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predictions for a putative fungal chaperone protein. Biochim Biophys Acta 1511:206–223

    Article  PubMed  CAS  Google Scholar 

  • Zhai Y, Tchieu J, Saier MH Jr (2002) A Web-based Tree View (TV) program for the visualization of phylogenetic trees. J Mol Microbiol Biotechnol 4:69–70

    PubMed  CAS  Google Scholar 

  • Zhao X, Yamazaki D, Park KH, Komazaki S, Tjondrokoesoemo A, Nishi M, Lin P, Hirata Y, Brotto M, Takeshima H, Ma J (2010) Ca2+ overload and sarcoplasmi reticulum instability in TRIC—a null skeletal muscle. J Biol Chem 285:37370–37376

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge the computational expertise and instructive efforts of Dorjee G. Tamang, Dr. Joshua Kohn for useful advice on phylogenetic tree construction and analysis and the NIH (GM077402) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton H. Saier Jr..

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silverio, A.L.F., Saier, M.H. Bioinformatic Characterization of the Trimeric Intracellular Cation-Specific Channel Protein Family. J Membrane Biol 241, 77–101 (2011). https://doi.org/10.1007/s00232-011-9364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-011-9364-8

Keywords

Navigation