Skip to main content
Log in

Bicarbonate Induces Membrane Reorganization and CBR1 and TRPV1 Endocannabinoid Receptor Migration in Lipid Microdomains in Capacitating Boar Spermatozoa

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Mammalian spermatozoa acquire full fertilizing ability only after a morphofunctional maturation called “capacitation.” During this process the high level of bicarbonate present within the upper female genital tract or in culture medium induces a marked reorganization of sperm membranes characterized by a biphasic behavior: In a few minutes, it promotes membrane phospholipid scrambling preliminary to the apical translocation of sterol that, 2–4 h later, enables spermatozoa to recognize zona pellucida after albumin-mediated cholesterol extraction. In the present research it was demonstrated that spermatozoa incubated with bicarbonate in protein-free media underwent a marked reorganization of lipid microdomains present in a detergent-resistant membrane fraction (DRM) isolated by ultracentrifugation on sucrose density gradient. In fact, bicarbonate exposed sperm (ES) cells, compared with ejaculated spermatozoa (nonexposed sperm [nES] cells), displayed an increase in protein DRM content and, in particular, in Cav-1 and CD55, markers of caveolae and lipid rafts, as well in acrosin-2, a marker of the outer acrosomal membrane (OAM). Moreover, the amount of certain proteins involved in capacitation, such as the endocannabinoid system receptors cannabinoid receptor type 1 (CBR1) and transient receptor potential cation channel 1 (TRPV1), increased in DRM obtained from ES. These data allow us to hypothesize that sperm membrane reorganization takes place even in the absence of extracellular proteins; that not only the plasma membrane but also the OAM participate in this process; and that important molecules playing a key role in inside–out signaling, such as the endocannbinoid receptors TRPV1 and CBR1, are involved in this event, with potentially important consequences on sperm function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asano A, Selvaraj V, Buttke DE, Nelson JL, Green KM, Evans JE, Travis AJ (2009) Biochemical characterization of membrane fractions in murine sperm: identification of three distinct sub-types of membrane rafts. J Cell Physiol 218:537–548

    Article  CAS  PubMed  Google Scholar 

  • Anderson RGW (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  CAS  PubMed  Google Scholar 

  • Barboni B, Mattioli M, Seren E (1995) Influence of progesterone on boar sperm capacitation. J Endocrinol 144:1–8

    Article  Google Scholar 

  • Bari M, Oddi S, De Simone C, Spagnolo P, Gasperi V, Battista N, Centonze D, Maccarrone M (2008) Type-1 cannabinoid receptors colocalize with caveolin-1 in neuronal cells. Neuropharmacology 54:45–50

    Article  CAS  PubMed  Google Scholar 

  • Bernabò N, Tettamanti E, Pistilli MG, Nardinocchi D, Berardinelli P, Mattioli M, Barboni B (2007) Effects of 50 Hz extremely low frequency magnetic field on the morphology and function of boar spermatozoa capacitated in vitro. Theriogenology 67:801–815

    Article  PubMed  Google Scholar 

  • Bernabò N, Pistilli MG, Mattioli M, Barboni B (2010) Role of TRPV1 channels in boar spermatozoa acquisition of fertilizing ability. Mol Cell Endocrinol 323:224–331

    Article  PubMed  Google Scholar 

  • Boerke A, Tsai PS, Garcia-Gil N, Brewis IA, Gadella BM (2008) Capacitation-dependent reorganization of microdomains in the apical sperm head plasma membrane: functional relationship with zona binding and the zona-induced acrosome reaction. Theriogenology 70:1188–1196

    Article  CAS  PubMed  Google Scholar 

  • Botto L, Beretta E, Bulbarelli A, Rivolta I, Lettiero B, Leone BE, Miserocchi G, Palestini P (2008) Hypoxia-induced modifications in plasma membranes and lipid microdomains in A549 cells and primary human alveolar cells. J Cell Biochem 105:503–513

    Article  PubMed  Google Scholar 

  • Bou Khalil M, Chakrabandhu K, Xu H, Weerachatyanukul W, Buhr M, Berger T, Carmona E, Vuong N, Kumarathasan P, Wong PT, Carrier D, Tanphaichitr N (2006) Sperm capacitation induces an increase in lipid rafts having zona pellucida binding ability and containing sulfogalactosylglycerolipid. Dev Biol 290:220–235

    Article  PubMed  Google Scholar 

  • Brown D (2006) Lipid rafts, detergent resistant membranes and rafts targeting signals. Physiology 21:430–439

    Article  CAS  PubMed  Google Scholar 

  • Burgos MH, Gutiérrez LS (1986) The Golgi complex of the early spermatid in guinea pig. Anat Rec 216:139–145

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628

    Article  CAS  PubMed  Google Scholar 

  • Choi YH, Toyoda Y (1998) Cyclodextrin removes cholesterol from mouse sperm and induces capacitation in a protein-free medium. Biol Reprod 59:1328–1333

    Article  CAS  PubMed  Google Scholar 

  • Cummerson JA, Flanagan BF, Spiller DG, Johnson PM (2006) The complement regulatory proteins CD55 (decay accelerating factor) and CD59 are expressed on the inner acrosomal membrane of human spermatozoa as well as CD46 (membrane cofactor protein). Immunology 118:333–342

    Article  CAS  PubMed  Google Scholar 

  • Daffara R, Botto L, Beretta E, Conforti E, Faini A, Palestini P, Miserocchi G (2004) Endothelial cells as early sensors of pulmonary interstitial edema. J Appl Physiol 97:1575–1583

    Article  CAS  PubMed  Google Scholar 

  • Dainese E, Oddi S, Bari M, Maccarrone M (2007) Modulation of the endocannabinoid system by lipid rafts. Curr Med Chem 14:2702–2715

    Article  CAS  PubMed  Google Scholar 

  • Flesch FM, Brouwers JF, Nievelstein PF, Verkleij AJ, van Golde LM, Colenbrander B, Gadella BM (2001) Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane. J Cell Sci 114:3543–3555

    CAS  PubMed  Google Scholar 

  • Gadella BM (2008) Sperm membrane physiology and relevance for fertilization. Anim Reprod Sci 107:229–236

    Article  CAS  PubMed  Google Scholar 

  • Gadella BM, Harrison RA (2002) Capacitation induces cyclic adenosine 3′,5′-monophosphate-dependent, but apoptosis-unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cells. Biol Reprod 67:340–350

    Article  CAS  PubMed  Google Scholar 

  • Gadella BM, Tsai PS, Boerke A, Brewis IA (2008) Sperm head membrane reorganisation during capacitation. Int J Dev Biol 52:473–480

    Article  CAS  PubMed  Google Scholar 

  • Ho HC, Tang CY, Suarez SS (1999) Three-dimensional structure of the Golgi apparatus in mouse spermatids: a scanning electron microscopic study. Anat Rec 256:189–194

    Article  CAS  PubMed  Google Scholar 

  • Howlett AC (1998) The CB1 cannabinoid receptor in the brain. Neurobiol Dis 5(6 Pt B):405–416

    Article  CAS  PubMed  Google Scholar 

  • Huang WP, Ho HC (2006) Role of microtubule-dependent membrane trafficking in acrosomal biogenesis. Cell Tissue Res 323:495–503

    Article  PubMed  Google Scholar 

  • Linder R, Naim HY (2009) Domains in biological membranes. Exp Cell Res 315:2871–2878

    Article  Google Scholar 

  • Maccarrone M, Barboni B, Paradisi A, Bernabò N, Gasperi V, Pistilli MG, Fezza F, Lucidi P, Mattioli M (2005) Characterization of the endocannabinoid system in boar spermatozoa and implications for sperm capacitation and acrosome reaction. Cell Sci 118:4393–4404

    Article  CAS  Google Scholar 

  • Moore MK, Viselli SM (2000) Staining and quantification of proteins transferred to polyvinylidine fluoride membranes. Anal Biochem 279:241–242

    Article  CAS  PubMed  Google Scholar 

  • Nixon B, Aitken RJ (2009) The biological significance of detergent-resistant membranes in spermatozoa. J Reprod Immunol 83:8–13

    Article  CAS  PubMed  Google Scholar 

  • Onaivi ES, Chakrabarti A, Chaudhuri G (1996) Cannabinoid receptor genes. Prog Neurobiol 48:275–305

    Article  CAS  PubMed  Google Scholar 

  • Palestini P, Calvi C, Conforti E, Botto L, Fenoglio C, Miserocchi G (2002) Composition, biophysical properties and morphometry of plasma membranes in pulmonary interstitial edema. Am J Physiol Lung Cell Mol Physiol 282:1382–1390

    Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Article  CAS  PubMed  Google Scholar 

  • Salinovich O, Montelaro RC (1986) Reversible staining and peptide mapping of proteins transferred to nitrocellulose after separation by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Anal Biochem 156:341–347

    Article  CAS  PubMed  Google Scholar 

  • Schuck S, Simons K (2004) Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 117:5955–5964

    Article  CAS  PubMed  Google Scholar 

  • Shadan S, James PS, Howes EA, Jones R (2004) Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biol Reprod 71:253–265

    Article  CAS  PubMed  Google Scholar 

  • Simons M, Friedrichson T, Schulz JB, Pitto M, Masserini M, Kurzchalia TV (1999) Exogenous administration of gangliosides displaces GPI-anchored proteins from lipid microdomains in living cells. Mol Biol Cell 10:3187–3196

    CAS  PubMed  Google Scholar 

  • Tettamanti G, Bonali F, Marchesini S, Zambotti V (1973) A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta 296:160–170

    CAS  PubMed  Google Scholar 

  • Thaler CD, Thomas M, Ramalie JR (2006) Reorganization of mouse sperm lipid rafts by capacitation. Mol Reprod Dev 73:1541–1549

    Google Scholar 

  • Travis AJ, Merdiushev T, Vargas LA, Jones BH, Purdon MA, Nipper RW, Galatioto J, Moss SB, Hunnicutt GR, Kopf GS (2001) Expression and localization of caveolin-1, and the presence of membrane rafts, in mouse and guinea pig spermatozoa. Dev Biol 240:599–610

    Article  CAS  PubMed  Google Scholar 

  • Van Gestel RA, Brewis IA, Ashton PR, Helms JB, Brouwers JF, Gadella BM (2005) Capacitation-dependent concentration of lipid rafts in the apical ridge head area of porcine sperm cells. Mol Hum Reprod 11:583–590

    Article  PubMed  Google Scholar 

  • Wu C, Ledeen R (1988) Quantification of gangliotetraose gangliosides with cholera toxin. Anal Biochem 173:368–375

    Article  CAS  PubMed  Google Scholar 

  • Zegers MM, Hoekstra D (1998) Mechanisms and functional features of polarized membrane traffic in epithelial and hepatic cells. Biochem J 336:257–269

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Barboni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botto, L., Bernabò, N., Palestini, P. et al. Bicarbonate Induces Membrane Reorganization and CBR1 and TRPV1 Endocannabinoid Receptor Migration in Lipid Microdomains in Capacitating Boar Spermatozoa. J Membrane Biol 238, 33–41 (2010). https://doi.org/10.1007/s00232-010-9316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9316-8

Keywords

Navigation