Skip to main content

Advertisement

Log in

Amphotericin B Membrane Action: Role for Two Types of Ion Channels in Eliciting Cell Survival and Lethal Effects

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The formation of aqueous pores by the polyene antibiotic amphotericin B (AmB) is at the basis of its fungicidal and leishmanicidal action. However, other types of nonlethal and dose-dependent biphasic effects that have been associated with the AmB action in different cells, including a variety of survival responses, are difficult to reconcile with the formation of a unique type of ion channel by the antibiotic. In this respect, there is increasing evidence indicating that AmB forms nonaqueous (cation-selective) channels at concentrations below the threshold at which aqueous pores are formed. The main foci of this review will be (1) to provide a summary of the evidence supporting the formation of cation-selective ion channels and aqueous pores by AmB in lipid membrane models and in the membranes of eukaryotic cells; (2) to discuss the influence of membrane parameters such as thickness fluctuations, the type of sterol present and the existence of sterol-rich specialized lipid raft microdomains in the formation process of such channels; and (3) to develop a cell model that serves as a framework for understanding how the intracellular K+ and Na+ concentration changes induced by the cation-selective AmB channels enhance multiple survival response pathways before they are overcome by the more sustained ion fluxes, Ca2+-dependent apoptotic events and cell lysis effects that are associated with the formation of AmB aqueous pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The KK equations (Kedem and Katchalsky 1958) assumed that the mechanism of osmotic water flow is the same as for pressure-driven flow, resulting in equal reflexion coefficients for osmosis and ultrafiltration. This asumption was proven to be incorrect and replaced by a bimodal theory of osmosis in which osmosis and ultrafiltration have distinct reflection coefficients (defined as σs and σf for osmosis and ultrafiltration, respectively) (Hill 1982). The basic idea in the bimodal theory of osmosis is that water transfer across membrane pores occurs by diffusion if the driving osmolytes have access to the pore. Otherwise, when the solute cannot enter the pore (in the so-called impermeable or semipermeable pores), a pressure gradient is established, resulting in viscous flow across the entire length of the channel. Calculations of the maximal values for the osmotic permeabilities across water channels of different pore radius (r p) such as aquaporin (r p = 2.0–2.5 Å), gramicidin (r p = 2.5 Å) and nystatin or AmB (r p = 4 Å) were found to be about one order of magnitude greater than for diffusive flows, in close agreement with the experimental data (Hill 1994). The reflection coefficients determined for the aqueous pores formed by nystatin and AmB in planar bilayers (Finkelstein and Holz 1973) are also in very good agreement with the values calculated using the expression for σs (Hill 1982).

  2. In pure lipid membranes, a solute such as urea permeates by dissolution in the membrane, so it is to be expected that σs for urea = 1.0 when [AmB] = 0. We calculated σ = 0.8 using the ratio of the initial slopes (dV/dt (t=0)) with urea and glucose at the same osmolarity (see Fig. 1 in Cohen 1998). The reason for the control value being smaller than 1 is not clear, but it can be partly due to glucose not being completely impermeable. However, if the value obtained for the AmB aqueous pores is corrected by this difference, it yields essentially the value of σs = 0.57 that was obtained for the aqueous pores formed by adding nystatin or AmB to one side (Kleinberg and Finkelstein 1984) or to both sides of planar lipid bilayers (Finkelstein and Holz 1973).

  3. An inverse relationship between the equilibrium constant K and the affinity (concentration) for the formation of AmB channels can be derived by applying the Scatchard equation as modified by Friguet et al. (1985) to calculate affinities when in an experiment the concentration of free antibodies is evaluated instead of concentrations of antigen–antibody complexes.

  4. While in the vertical position, the amino and carboxyl groups at one end of the polyene antibiotic (Fig. 1) are known to interact strongly with the polar heads of the phospholipids rather than with the hydrophobic core (Sternal et al. 2004; Gabrielska et al. 2006). This orientation is not expected to be the preferred mode of membrane insertion of AmB monomers from the water phase due to the predominance of electrostatic forces.

  5. Hill coefficients ranging from 3.0 to 5.0 were calculated from the earliest (just after mixing) polyene-induced osmotic changes that were measured at concentrations leading to the formation of ion channels across ergosterol-containing membranes (Cohen et al. 1986). Such Hill coefficients can be taken as the number of units (possibly dimers, see Gruszecki et al. 2003) that interacting in a cooperative event are needed to form the postulated eight-monomer ring structure that creates a channel with a 4 Å radius (De Kruijff and Demel 1974; see also Baginski et al. 1997).

  6. In liposomes prepared free of sterols, AmB is able to induce the formation of cation-selective nonaqueous pores at concentrations similar to that required in cholesterol-containing liposomes (e.g., ≥0.5 × 10−6 M) but concentrations as high as 10 × 10−6 M AmB are needed to detect the first indications of the formation of aqueous pores (Table 1).

  7. The interfacial energy—also known as “line tension”—is the result of a hydrophobic thickness mismatch between the lipid rafts and those in the surrounding membrane. The formation of AmBaq-pores at the boundaries of the lipid rafts may contribute to reduce the line tension by the formation of AmB–sterol complexes that produce a thickness decrease by locally removing cholesterol molecules from interactions with phospholipid molecules. Interestingly, AmB has been shown to enhance the transbilayer mobility of phospholipids in erythrocyte membranes, an effect that disrupts the asymmetric distribution of aminophospholipids (Schneider et al. 1986). As discussed previously (Romero et al. 2009), the loss of phospholipid membrane asymmetry in erythrocyte membranes (Lange et al. 2007) may produce an increased exposure of the cholesterol at the outer leaflet that may facilitate the direct interaction of AmB with the sterol (Szponarski and Bolard 1987).

  8. The dose-dependent inhibition by AmE of the entry mechanism of HIV-1 into cells was significantly increased from 1 to 4.0 × 10−6 M AmE, a concentration range at which AmBaq-pores are predominantly formed in the cholesterol/SPM-rich lipid rafts of human erythrocyte membranes (Romero et al. 2009). Both AmE and AmB are known to induce their permeabilizing activity in human erythrocytes at essentially the same concentrations (Bolard 1986).

  9. The Mapk1 pathway, which is also referred to as the cell integrity/PKC pathway, is one of the yeast signal-transduction pathways that is essential for sensing the integrity of the cell wall under environmental stresses such as hypo-osmotic shock (Davenport et al. 1995), high temperatures (Kamada et al. 1995) or exposure to inhibitors of the synthesis of essential cell wall components (Levin 2005). Activation of the cell integrity/PKC pathway proceeds from the stimulation of plasma membrane proteins (Mid2, Wsc1-4) that interact with the guanine nucleotide exchange factors (Rom1 and Rom2) for Rho1 GTPase (a small Ras-like protein), which in turn activates PKC and the MAP kinase cascade (Qi and Elion 2005). Deletion of genes such as Rom2 or those of other proteins that participate in the cell integrity/PKC pathway exhibits a temperature-sensitive cell lysis phenotype that is suppressed by the external addition of impermeant solutes as osmotic stabilizers (Cid et al. 1995). In Candida and other fungi, a Ras/cAMP-signaling pathway also controls osmotic and other stress responses that are critical for keeping the wall integrity via activation of PKA (Harcus et al. 2004). A connection between the cell integrity/PKC and RAS/cAMP pathways has been recently demonstrated in yeast via the shared protein Rom2 (Park et al. 2005).

  10. A genomewide fitness and expression profile using yeast cells to understand the molecular pathways involved in the so-called adaptive response to oxidative stress found that mild pretreatment of cells with H2O2 produced a significant decrease of ergosterol content but the level of Fas1 mRNA levels increased (Kelley and Ideker 2009). This study was able to identify Mga2, a transcription factor, as an important gene in the yeast adaptation to H2O2 exposure. This transcription factor has been implicated in fatty acid biosynthesis and in the response to hypoxia (Kelley and Ideker 2009).

  11. The dissipation of the proton gradient by AmB across the membrane is greatly enhanced by the formation of AmBaq-pores as shown by the relatively higher concentrations of AmB and nystatin that were needed to collapse the proton gradient in yeast cells (Palacios and Serrano 1978). In effect, it is known that the AmBnonaq channels have a very low permeability to protons (Cybulska et al. 1995) that increased via the AmBaq-pores (Cohen 1998). These permeability properties of the AmB channels formed are consistent with the results obtained with Candida cells treated with low AmB concentrations that have indicated that under these conditions the replication competence, intracellular ATP levels and negative membrane potential are maintained (Liao et al. 1999).

  12. At concentrations below 0.1 × 10−6 M AmB, Brajtburg et al. (1984) also found that AmB induced an enhancement of plating efficiency of L cells and other stimulatory effects on the incorporation of uridine and thymidine into RNA and DNA, respectively.

  13. Increasing evidence supports that K+ depletion from cells has a direct effect on the activation of the proinflammatory cytokines IL-1β and IL-18 into their mature active forms in NLRP3 and NLRP1 inflammasomes (Aroian and van der Goot 2007; Petrilli et al. 2007).

  14. The results by Zager (2000) in mammalian cells are opposite to those obtained in Candida cells by Liu et al. (2005) that indicated the downregulation by AmB of a set of genes coding for proteins responsible of the synthesis of ergosterol, long-chain saturated fatty acids and ceramide. It appears that such opposite trends in the observed responses can be related to the quite distinct concentrations used in the fungal versus mammalian cell experiments, which is the main factor for determining that either AmBnonaq or AmBaq-pores are formed, affecting different pathways.

References

  • Almeida B, Buttner S, Ohlmeier S, Silva A, Mesquita A, Sampaio-Marques B, Osório NS, Kollau A, Mayer B, Leão C, Laranjinha J, Rodrigues F, Madeo F, Ludovico P (2007) NO-mediated apoptosis in yeast. J Cell Sci 120(Pt 18):3279–3288

    Article  CAS  PubMed  Google Scholar 

  • Arikan S, Ostrosky-Zeichner L, Lozano-Chiu M, Paetznick V, Gordon D, Wallace T, Rex JH (2002) In vitro activity of nystatin compared with those of liposomal nystatin, amphotericin B, and fluconazole against clinical Candida isolates. J Clin Microbiol 40:1406–1412

    Article  CAS  PubMed  Google Scholar 

  • Aroian R, van der Goot FG (2007) Pore-forming toxins and cellular non-immune defenses. Curr Opin Microbiol 10:57–61

    Article  CAS  PubMed  Google Scholar 

  • Ayajiki K, Kindermann M, Hecker M, Flemming I, Busse R (1996) Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res 78:750–758

    CAS  PubMed  Google Scholar 

  • Backmüller-Rouiller Y, Corradin SB, Smith J, Mauël J (1994) Effect of increasing intravesicular pH on nitrite production and leishmanicidal activity of activated macrophages. Biochem J 301:243–247

    Google Scholar 

  • Baginski M, Resat H, McCammon JA (1997) Molecular properties of amphotericin B membrane channel: a molecular dynamics simulation. Mol Pharmacol 52:560–570

    CAS  PubMed  Google Scholar 

  • Balligand J-L, Feron O, Dessy C (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89:481–534

    Article  CAS  PubMed  Google Scholar 

  • Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ (2002) Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother 46:828–833

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, Rasola A (2007) Calcium and cell death: the mitochondrial connection. Subcell Biochem 45:481–506

    Article  CAS  PubMed  Google Scholar 

  • Bien CM, Espenshade PJ (2010) Sterol regulatory element binding proteins in fungi: hypoxic transcription factors linked to pathogenesis. Eukaryot Cell 9:352–359

    Article  CAS  PubMed  Google Scholar 

  • Binet A, Bolard J (1988) Recovery of hepatocytes from attack by the pore former amphotericin B. Biochem J 253:435–440

    CAS  PubMed  Google Scholar 

  • Bolard J (1986) How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochem Biophys Acta 864:257–304

    CAS  PubMed  Google Scholar 

  • Bolard J, Legrand P, Heitz F, Cybulska B (1991) One-sided action of amphotericin B on cholesterol-containing membranes is determined by its self-association in the medium. Biochemistry 30:5707–5715

    Article  CAS  PubMed  Google Scholar 

  • Borisova MP, Ermishkin LN, Silberstein AY (1979) Mechanism of blockage of amphotericin B channels in a lipid bilayer. Biochim Biophys Acta 553:450–459

    Article  CAS  PubMed  Google Scholar 

  • Bradbury DA, Simmons TD, Slater KJ, Crouch SP (2000) Measurement of the ADP: ATP ratio in human leukaemic cell lines can be used as an indicator of cell viability, necrosis and apoptosis. J Immunol Methods 240:79–92

    Article  CAS  PubMed  Google Scholar 

  • Brajtburg J, Elberg S, Medoff J, Kobayashi GS, Schlessinger D, Medoff G (1984) Stimulatory, permeabilizing, and toxic effects of amphotericin B in L cells. Antimicrob Agents Chemother 26:892–897

    CAS  PubMed  Google Scholar 

  • Carafoli E, Lehninger AL (1971) A survey of the interaction of calcium ions with mitochondria from different tissues and species. Biochem J 122:681–690

    CAS  PubMed  Google Scholar 

  • Cid VJ, Duran A, del Rey F, Snyder MP, Nombela C, Sanchez M (1995) Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59:345–386

    CAS  PubMed  Google Scholar 

  • Cohen BE (1983) The nature of the channels formed by amphotericin B in liposomes. In: Bangham AD (ed) Liposome letters. Academic Press, London, pp 125–133

    Google Scholar 

  • Cohen BE (1986) Concentration and time dependence of amphotericin B—induced permeability changes across ergosterol-containing liposomes. Biochim Biophys Acta 856:117–122

    Google Scholar 

  • Cohen BE (1992) A sequential mechanism for the formation of aqueous channels by amphotericin B in liposomes. The effect of sterols and phospholipid composition. Biochim Biophys Acta 1108:49–58

    Article  CAS  PubMed  Google Scholar 

  • Cohen BE (1998) Amphotericin B toxicity and lethality: a tale of two channels. Int J Pharma 162:95–106

    Article  CAS  Google Scholar 

  • Cohen BE, Gamargo M (1987) Concentration and time dependence of amphotericin B-induced permeability changes across membrane vesicles from Leishmania sp. Drugs Exp Clin Res 13:539–546

    CAS  PubMed  Google Scholar 

  • Cohen BE, Ramos H, Gamargo M, Urbina J (1986) The water and ionic permeability induced by polyene antibiotics across plasma membrane vesicles from Leishmania sp. Biochem Biophys Acta 860:57–65

    Article  CAS  PubMed  Google Scholar 

  • Cohen BE, Benaim G, Ruiz MC, Michelangeli F (1990) Increased calcium permeability is not responsible for the rapid lethal effects of amphotericin B on Leishmania sp. FEBS Lett 259:286–288

    Article  CAS  PubMed  Google Scholar 

  • Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St. Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C (2010) The genetic landscape of a cell. Science 327:425–431

    Article  CAS  PubMed  Google Scholar 

  • Cybulska B, Bolard J, Seksek O, Czerwinski A, Borowski E (1995) Identification of the structural elements of amphotericin B and other macrolide antibiotics of the heptaene group influencing the ionic selectivity of the permeability pathways formed in the red cell membrane. Biochim Biophys Acta 1240:167–178

    Article  PubMed  Google Scholar 

  • Davenport KR, Sohaskey M, Kamada Y, Levin DE, Gustin MC (1995) A second osmosensing signal transduction pathway in yeast. Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway. J Biol Chem 270:30157–30161

    Article  CAS  PubMed  Google Scholar 

  • De Kruijff B, Demel RA (1974) Polyene antibiotic-sterol interactions in membranes of Acholesplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim Biophys Acta 339:57–70

    Article  PubMed  Google Scholar 

  • De Vito P (2006) The sodium/hydrogen exchanger: a possible mediator of immunity. Cell Immunol 240:69–85

    Article  PubMed  CAS  Google Scholar 

  • Demel RA, Bruckdorfer KR, van Deenen LL (1972) The effect of sterol structure on the permeability of lipomes to glucose, glycerol and Rb+. Biochim Biophys Acta 255:321–330

    Article  CAS  PubMed  Google Scholar 

  • Denny PW, Field MC, Smith DF (2001) GPI-anchored proteins and glycoconjugates segregate into lipid rafts in Kinetoplastida. FEBS Lett 491:148–153

    Article  CAS  PubMed  Google Scholar 

  • Dickson RC, Sumanasekera C, Lester RL (2006) Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog Lipid Res 45:447–465

    Article  CAS  PubMed  Google Scholar 

  • Donowick R, Gold W, Pagano JF, Stout HA (1956) Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studies. Antibiot Annu 3:579–586

    Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  • Du W, Ayscough KR (2009) Methyl beta-cyclodextrin reduces accumulation of reactive oxygen species and cell death in yeast. Free Radic Biol Med 46:1478–1487

    Article  CAS  PubMed  Google Scholar 

  • Edholm O, Nagle JF (2005) Areas of molecules in membranes consisting of mixtures. Biophys J 89:1827–1832

    Article  CAS  PubMed  Google Scholar 

  • Enjalbert B, Smith DA, Cornell MJ, Alam I, Nicholls S, Brown AJ, Quinn J (2006) Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell 17:1018–1032

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein A (1987) Water movement through lipid bilayers, pores, and plasma membranes. Theory and reality. Distinguished lecture series of the society of general physiologists. John Wiley & Sons, New York

    Google Scholar 

  • Finkelstein A, Holz R (1973) Aqueous pores created in thin lipid membranes by the polyene antibiotic nystatin and amphotericin B. In: Eisenman G (ed) Membranes, vol 2. Marcel Decker, New York, pp 377–408

    Google Scholar 

  • Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284:R1–R12

    CAS  PubMed  Google Scholar 

  • Friguet B, Chaffotte AF, Djavadi-Ohaniance L, Goldberg ME (1985) Measurements of the true affinity constant in solution of antigen–antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods 77:305–319

    Article  CAS  PubMed  Google Scholar 

  • Gabrielska J, Gagoś M, Gubernator J, Gruszecki WI (2006) Binding of antibiotic amphotericin B to lipid membranes: a 1H NMR study. FEBS Lett 580:2677–2685

    Article  CAS  PubMed  Google Scholar 

  • Gagoś M, Gabrielska J, Dalla Serra M, Gruszecki WI (2005) Binding of antibiotic amphotericin B to lipid membranes: monomolecular layer technique and linear dichroism-FTIR studies. Mol Membr Biol 2:433–442

    Article  CAS  Google Scholar 

  • Gandhavadi M, Allende D, Vidal A, Simon SA, McIntosh TJ (2002) Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Biophys J 82:1469–1482

    Article  CAS  PubMed  Google Scholar 

  • Ganis P, Avitabile G, Mechlinski W, Schaffner CP (1971) Polyene macrolide antibiotic amphotericin B. Crystal structure of the N-iodoacetyl derivative. J Am Chem Soc 93:4560–4564

    Article  CAS  PubMed  Google Scholar 

  • García-Sáez AJ, Chiantia S, Schwille P (2007a) Effect of line tension on the lateral organization of lipid membranes. J Biol Chem 282:33537–33544

    Article  PubMed  CAS  Google Scholar 

  • García-Sáez AJ, Chiantia S, Salgado J, Schwille P (2007b) Pore formation by a Bax-derived peptide: effect on the line tension of the membrane probed by AFM. Biophys J 93:103–112

    Article  PubMed  CAS  Google Scholar 

  • Ghosh D, Tinoco J (1972) Monolayer interactions of individual lecithins with natural sterols. Biochim Biophys Acta 266:41–49

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JL, DeBose-Boyd RA, Brown MS (2006) Protein sensors for membrane sterols. Cell 124:35–46

    Article  CAS  PubMed  Google Scholar 

  • Gourlay CW, Ayscough KR (2006) Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae. Mol Cell Biol 26:6487–6501

    Article  CAS  PubMed  Google Scholar 

  • Gruszecki WI, Gagoœ M, Hereæ M (2003) Dimers of polyene antibiotic amphotericin B detected by means of fluorescence spectroscopy: molecular organization in solution and in lipid membranes. J Photochem Photobiol B 69:49–57

    Article  CAS  PubMed  Google Scholar 

  • Gurcel L, Abrami L, Girardin S, Tschopp J, van der Gisou Goot F (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Haddad JJ (2005) Amiloride and the regulation of NF-kappaB: an unsung crosstalk and missing link between fluid dynamics and oxidative stress-related inflammation—controversy or pseudo-controversy? Biochem Biophys Res Commun 327:373–381

    Article  CAS  PubMed  Google Scholar 

  • Haimovitz-Friedman A, Kolesnick RN, Fuks Z (1997) Ceramide signaling in apoptosis. Br Med Bull 53:539–553

    CAS  PubMed  Google Scholar 

  • Harcus D, Nantel A, Marcil A, Rigby T, Whiteway M (2004) Transcription profiling of cyclic AMP signaling in Candida albicans. Mol Biol Cell 15:4490–4499

    Article  CAS  PubMed  Google Scholar 

  • Hartsel SC, Benz SK, Ayenew W, Bolard J (1994) Na, K, and Cl selectivity of the permeability pathways induced through sterol-containing vesicles by amphotericin B and other polyene antibiotics. Eur Biophys J 23:125–132

    Article  CAS  PubMed  Google Scholar 

  • Hill A (1982) Osmosis: a bimodal theory with implications for symmetry. Proc R Soc Lond B Biol Sci 215:155–174

    Article  CAS  PubMed  Google Scholar 

  • Hill AE (1994) Osmotic flow in membrane pores of molecular size. J Membr Biol 137:197–203

    CAS  PubMed  Google Scholar 

  • Hill MW, Cohen BE (1972) A simple method of determining relative permeabilities of liposomes to nonelectrolytes. Biochim Biophys Acta 290:403–407

    Article  CAS  PubMed  Google Scholar 

  • Hoehamer CF, Cummings ED, Hilliard GM, Rogers PD (2010) Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents. Antimicrob Agents Chemother 54:1655–1664

    Article  CAS  PubMed  Google Scholar 

  • Hsu SF, Burnette RR (1993) The effect of amphotericin B on the K-channel activity of MDCK cells. Biochim Biophys Acta 1152:189–191

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Feigenson GW (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J 76:2142–2157

    Article  CAS  PubMed  Google Scholar 

  • Hunter I, Nixon GF (2006) Spatial compartmentalization of tumor necrosis factor (TNF) receptor 1–dependent signaling pathways in human airway smooth muscle cells. Lipid rafts are essential for TNF-alpha-mediated activation of RhoA but dispensable for the activation of the NF-kappaB and MAPK pathways. J Biol Chem 281:34705–34715

    Article  CAS  PubMed  Google Scholar 

  • Ivashkiv LB (2008) A signal-switch hypothesis for cross-regulation of cytokine and TLR signalling pathways. Nat Rev Immunol 8:816–822

    Article  CAS  PubMed  Google Scholar 

  • Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:7329–7334

    Article  CAS  PubMed  Google Scholar 

  • Jones J, Kosloff BR, Benveniste EM, Shaw GM, Kutsh O (2005) Amphotericin B-mediated reactivation of latent HIV-1 infection. Virology 331:106–116

    Article  CAS  PubMed  Google Scholar 

  • Kamada Y, Jung US, Piotrowski J, Levin DE (1995) The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 9:1559–1571

    Article  CAS  PubMed  Google Scholar 

  • Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246

    Article  CAS  PubMed  Google Scholar 

  • Kelley R, Ideker T (2009) Genome-wide fitness and expression profiling implicate Mga2 in adaptation to hydrogen peroxide. PLoS Genet 5:e1000488

    Article  PubMed  CAS  Google Scholar 

  • Kleinberg ME, Finkelstein A (1984) Single-length and double-length channels formed by nystatin in lipid bilayer membranes. J Membr Biol 80:257–269

    Article  CAS  PubMed  Google Scholar 

  • Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23:975–982

    Article  CAS  PubMed  Google Scholar 

  • Ko YJ, Yu YM, Kim GB, Lee GW, Maeng PJ, Kim S, Floyd A, Heitman J, Bahn YS (2009) Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress-activated HOG signaling pathways. Eukaryot Cell 8:1197–1217

    Article  CAS  PubMed  Google Scholar 

  • Koerkamp MG, Rep M, Bussemaker HJ, Hardy GP, Mul A, Piekarska K, Szigyarto CA, De Mattos JM, Tabak HF (2002) Dissection of transient oxidative stress response in Saccharomyces cerevisiae by using DNA microarrays. Mol Biol Cell 13:2783–2794

    Article  CAS  PubMed  Google Scholar 

  • Koide N, Naiki Y, Morikawa A, Tumurkhuu G, Dagvadorj J, Noman AS, Iftekar-E-Khuda I, Komatsu T, Yoshida T, Yokochi T (2009) Nystatin-induced nitric oxide production in mouse macrophage-like cell line RAW264.7. Microbiol Immunol 53:295–300

    Article  CAS  PubMed  Google Scholar 

  • Kolyada AY, Madias NE (2001) Transcriptional regulation of the human iNOS gene by IL-1beta in endothelial cells. Mol Med 7:329–343

    CAS  PubMed  Google Scholar 

  • Krivanek R, Okoro L, Winter R (2008) Effect of cholesterol and ergosterol on the compressibility and volume fluctuations of phospholipid-sterol bilayers in the critical point region: a molecular acoustic and calorimetric study. Biophys J 94:3538–3548

    Article  CAS  PubMed  Google Scholar 

  • Kuzmin PI, Akimov SA, Chizmadzhev YA, Zimmerberg J, Cohen FS (2005) Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. Biophys J 88:1120–1133

    Article  CAS  PubMed  Google Scholar 

  • Lange Y, Ye J, Steck TL (2007) Scrambling of phospholipids activates red cell membrane cholesterol. Biochemistry 46:2233–2238

    Article  CAS  PubMed  Google Scholar 

  • Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL (2002) Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 9:53–64

    Article  CAS  PubMed  Google Scholar 

  • Legrand P, Chéron M, Leroy L, Bolard J (1997) Release of amphotericin B from delivery systems and its action against fungal and mammalian cells. J Drug Target 4:311–319

    Article  CAS  PubMed  Google Scholar 

  • Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291

    Article  CAS  PubMed  Google Scholar 

  • Levitan I, Fang Y, Rosenhouse-Dantsker A, Romanenko V (2010) Cholesterol and ion channels. Subcell Biochem 51:509–549

    Article  CAS  PubMed  Google Scholar 

  • Liao RS, Rennie RP, Talbot JA (1999) Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob Agents Chemother 43:1034–1041

    CAS  PubMed  Google Scholar 

  • Lindahl E, Edholm O (2000) Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J 79:426–433

    Article  CAS  PubMed  Google Scholar 

  • Liu TT, Lee RE, Barker KS, Lee RE, Wei L, Homayouni R, Rogers PD (2005) Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49:2226–2236

    Article  CAS  PubMed  Google Scholar 

  • Loukin SH, Kung C, Saimi Y (2007) Lipid perturbations sensitize osmotic down-shock activated Ca2+ influx, a yeast “deletome” analysis. FASEB J 21:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Madeo F, Engelhardt S, Herker E, Lehmann N, Maldener C, Proksch A, Wissing S, Fröhlich KU (2002) Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr Genet 41:208–216

    Article  CAS  PubMed  Google Scholar 

  • Maeng S, Ko YJ, Kim GB, Jung KW, Floyd A, Heitman J, Bahn YS (2010) Comparative transcriptome analysis reveals novel roles of the Ras and cyclic AMP signaling pathways in environmental stress response and antifungal drug sensitivity in Cryptococcus neoformans. Eukaryot Cell 9:360–378

    Article  CAS  PubMed  Google Scholar 

  • Mahnensmith RL, Aronson PS (1984) Interrelationships among quinidine, amiloride, and lithium as inhibitors of the renal Na+–H+ exchanger. J Biol Chem 260:12586–12592

    Google Scholar 

  • Mathai JC, Tristram-Nagle S, Nagle JF, Zeidel ML (2008) Structural determinants of water permeability through the lipid membrane. J Gen Physiol 131:69–76

    Article  CAS  PubMed  Google Scholar 

  • Matias AC, Pedroso N, Teodoro N, Marinho HS, Antunes F, Nogueira JM, Herrero E, Cyrne L (2007) Down-regulation of fatty acid synthase increases the resistance of Saccharomyces cerevisiae cells to H2O2. Free Radic Biol Med 43:1458–1465

    Article  CAS  PubMed  Google Scholar 

  • Matsumori N, Tahara K, Yamamoto H, Morooka A, Doi M, Oishi T, Murata M (2009) Direct interaction between amphotericin B and ergosterol in lipid bilayers as revealed by 2H NMR spectroscopy. J Am Chem Soc 131:11855–11860

    Article  CAS  PubMed  Google Scholar 

  • Matsuo K, Hotokezaka H, Ohara N, Fujimura Y, Yoshimura A, Okada Y, Hara Y, Yoshida N, Nakayama K (2006) Analysis of amphotericin B-induced cell signaling with chemical inhibitors of signaling molecules. Microbiol Immunol 50:337–347

    CAS  PubMed  Google Scholar 

  • Mazerski J, Grzybowska J, Borowski E (1990) Influence of net charge on the aggregation and solubility behaviour of amphotericin B and its derivatives in aqueous media. Eur Biophys J 18:159–164

    Article  CAS  PubMed  Google Scholar 

  • Meima ME, Webb BA, Witkowska HE, Barber DL (2009) The sodium–hydrogen exchanger NHE1 is an Akt substrate necessary for actin filament reorganization by growth factors. J Biol Chem 284:26666–26675

    Article  CAS  PubMed  Google Scholar 

  • Merchan S, Bernal D, Serrano R, Yenush L (2004) Response of the Saccharomyces cerevisiae Mpk1 mitogen-activated protein kinase pathway to increases in internal turgor pressure caused by loss of Ppz protein phosphatases. Eukaryot Cell 3:100–107

    Article  CAS  PubMed  Google Scholar 

  • Milhaud J, Ponsinet V, Takashi M, Michels B (2002) Interactions of the drug amphotericin B with phospholipid membranes containing or not ergosterol: new insight into the role of ergosterol. Biochim Biophys Acta 1558:95–108

    Article  CAS  PubMed  Google Scholar 

  • Moen MD, Lyseng-Williamson KA, Scott LJ (2009) Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs 69:361–392

    Article  CAS  PubMed  Google Scholar 

  • Mouri R, Konoki K, Matsumori N, Oishi T, Murata M (2008) Complex formation of amphotericin B in sterol-containing membranes as evidenced by surface plasmon resonance. Biochemistry 47:7807–7815

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SA, Robson GD (2004) Oxidative and amphotericin B-mediated cell death in the opportunistic pathogen Aspergillus fumigatus is associated with an apoptotic-like phenotype. Microbiology 150:1937–1945

    Article  PubMed  CAS  Google Scholar 

  • Mozaffarian N, Berman JW, Casadevall A (1997) Enhancement of nitric oxide synthesis by macrophages represents an additional mechanism of action for amphotericin B. Antimicrob Agents Chemother 41:1825–18239

    CAS  PubMed  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195

    CAS  PubMed  Google Scholar 

  • Nicolini C, Baranski J, Schlummer S, Palomo J, Lumbierres-Burgues M, Kahms M, Kuhlmann J, Sanchez S, Gratton E, Waldmann H, Winter R (2006) Visualizing association of N-ras in lipid microdomains: influence of domain structure and interfacial adsorption. J Am Chem Soc 128:192–201

    Article  CAS  PubMed  Google Scholar 

  • O’Gorman MRG, Hopfer RL (1991) Amphotericin B susceptibility testing of Candida species by flow cytometry. Cytometry 12:743–747

    Article  PubMed  Google Scholar 

  • Palacios J, Serrano R (1978) Proton permeability induced by polyene antibiotics. FEBS Lett 91:198–201

    Article  CAS  PubMed  Google Scholar 

  • Panayiotidis MI, Bortner CD, Cidlowski JA (2006) On the mechanism of ionic regulation of apoptosis: would the Na+/K+-ATPase please stand up? Acta Physiol (Oxf) 187:205–215

    Article  CAS  Google Scholar 

  • Park HO, Bi E (2007) Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 71:48–96

    Article  CAS  PubMed  Google Scholar 

  • Park JI, Collinson EJ, Grant CM, Dawes IW (2005) Rom2p, the Rho1 GTP/GDP exchange factor of Saccharomyces cerevisiae, can mediate stress responses via the Ras-cAMP pathway. J Biol Chem 280:2529–2535

    Article  CAS  PubMed  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  CAS  PubMed  Google Scholar 

  • Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589

    Article  CAS  PubMed  Google Scholar 

  • Phillips AJ, Sudbery I, Ramsdale M (2003) Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Natl Acad Sci USA 100:14327–14332

    Article  CAS  PubMed  Google Scholar 

  • Phillips AJ, Crowe JD, Ramsdale M (2006) Ras pathway signaling accelerates programmed cell death in the pathogenic fungus Candida albicans. Proc Natl Acad Sci USA 103:726–731

    Article  CAS  PubMed  Google Scholar 

  • Posas F, Casamayor A, Ariño J (1993) The PPZ protein phosphatases are involved in the maintenance of osmotic stability of yeast cells. FEBS Lett 318:282–286

    Article  CAS  PubMed  Google Scholar 

  • Qi M, Elion EA (2005) MAP kinase pathways. J Cell Sci 118(Pt 16):3569–3572

    Article  CAS  PubMed  Google Scholar 

  • Rabaste F, Sancelme M, Delort A-M (1995) Modifications of pH and K+ gradients in Candida albicans blastopores inducded by amphotericin B. A 31P NMR and K+ atomic absorption study. Biochim Biophys Acta 1268:50–58

    Article  PubMed  Google Scholar 

  • Ramos H, Attias de Murciano A, Cohen BE, Bolard J (1989) The polyene antibiotic amphotericin B acts as a Ca2+ ionophore across sterol-containing liposomes. Biochim Biophys Acta 982:303–306

    Article  CAS  PubMed  Google Scholar 

  • Ramos H, Milhaud J, Cohen BE, Bolard J (1990) Enhanced action of amphotericin B on Leishmania mexicana resulting from heat transformation. Antimicrob Agents Chemother 34:1584–1589

    CAS  PubMed  Google Scholar 

  • Ramos H, Valdivieso E, Gamargo M, Dagger F, Cohen BE (1996) Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions. J Membr Biol 152:65–75

    Article  CAS  PubMed  Google Scholar 

  • Razonable RR, Henault M, Lee LN, Laethem C, Johnston PA, Watson HL, Paya CV (2005) Secretion of proinflammatory cytokines and chemokines during amphotericin B exposure is mediated by coactivation of toll-like receptors 1 and 2. Antimicrob Agents Chemother 49:1617–1621

    Article  CAS  PubMed  Google Scholar 

  • Rex JH, Pfaller MA, Walsh TJ, Chaturvedi V, Espinel-Ingroff A, Ghannoum MA, Gosey LL, Odds FC, Rinaldi MG, Sheehan DJ, Warnock DW (2001) Antifungal susceptibility testing: practical aspects and current challenges. Clin Microbiol Rev 14:643–658

    Article  CAS  PubMed  Google Scholar 

  • Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ (2009) The challenge of finding a cure for HIV infection. Science 323:1304–1307

    Article  CAS  PubMed  Google Scholar 

  • Rogers PD, Kramer RE, Chapman SW, Cleary JD (1999) Amphotericin B-induced interleukin-1beta expression in human monocyte cells is calcium and calmodulin dependent. J Infect Dis 180:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Rogers PD, Pearson MM, Cleary JD, Sullivan DC, Chapman SW (2002) Differential expression of genes encoding immunomodulatory proteins in response to amphotericin B in human mononuclear cells identified by cDNA microarray analysis. J Antimicrob Chemother 50:811–817

    Article  CAS  PubMed  Google Scholar 

  • Rogers PD, Kramer RE, Crews JK, Lewis RE, Rogers PD, Kramer RE, Crews JK, Lewis RE (2003a) The activity of amphotericin B against Candida albicans is not directly associated with extracellular calcium concentration. J Antimicrob Chemother 51:305–312

    Article  CAS  PubMed  Google Scholar 

  • Rogers PD, Barker KS, Herring V, Jacob M (2003b) Heat-induced superaggregation of amphotericin B attenuates its ability to induce cytokine and chemokine production in the human monocytic cell line THP-1. J Antimicrob Chemother 51:405–408

    Article  CAS  PubMed  Google Scholar 

  • Romero EA, Valdivieso E, Cohen BE (2009) Formation of two different types of ion channels by amphotericin B in human erythrocyte membranes. J Membr Biol 230:69–81

    Article  CAS  PubMed  Google Scholar 

  • Rosenhouse-Dantsker A, Leal-Pinto E, Logothetis DE, Levitan I (2010) Comparative analysis of cholesterol sensitivity of Kir channels: role of the CD loop. Channels (Austin) 4:63–66

    CAS  Google Scholar 

  • Ruckwardt T, Scott A, Scott J, Mikulecky P, Hartsel SC (1998) Lipid and stress dependence of amphotericin B ion selective channels in sterol-free membranes. Biochim Biophys Acta 1372:283–288

    Article  CAS  PubMed  Google Scholar 

  • Saint-Pierre-Chazalet M, Ben Brahim M, Le Moyec L, Bories C, Rakotomanga M, Loiseau PM (2009) Membrane sterol depletion impairs miltefosine action in wild-type and miltefosine-resistant Leishmania donovani promastigotes. J Antimicrob Chemother 64:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Sau K, Manbula SS, Latz E, Henneke P, Golenbock DT, Levitz SM (2003) The antifungal drug amphotericin B promotes inflammatory cytokine release by a Toll-like receptor- and CD14-dependent mechanism. J Biol Chem 39:37561–37586

    Article  CAS  Google Scholar 

  • Schäffer E, Thiele U (2004) Dynamic domain formation in membranes: thickness-modulation-induced phase separation. Eur Phys J E Soft Matter 14:169–175

    Article  PubMed  CAS  Google Scholar 

  • Schneider E, Haest CW, Plasa G, Deuticke B (1986) Bacterial cytotoxins, amphotericin B and local anesthetics enhance transbilayer mobility of phospholipids in erythrocyte membranes. Consequences for phospholipid asymmetry. Biochim Biophys Acta 855:325–336

    Article  CAS  PubMed  Google Scholar 

  • Schultz SG, Solomon AK (1961) Determination of the effective hydrodynamic radii of small molecules by viscometry. J Gen Physiol 44:1189–1199

    Article  CAS  PubMed  Google Scholar 

  • Seifert K, Croft SL (2006) In vitro and in vivo interactions between miltefosine and other antileishmanial drugs. Antimicrob Agents Chemother 50:73–79

    Article  CAS  PubMed  Google Scholar 

  • Shaha C (2006) Apoptosis in Leishmania species and its relevance to disease pathogenesis. Indian J Med Res 123:233–244

    CAS  PubMed  Google Scholar 

  • Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295

    Article  CAS  PubMed  Google Scholar 

  • Singh DK, Rosenhouse-Dantsker A, Nichols CG, Enkvetchakul D, Levitan I (2009) Direct regulation of prokaryotic Kir channel by cholesterol. J Biol Chem 284:30727–30736

    Article  CAS  PubMed  Google Scholar 

  • Slater AF, Stefan C, Nobel I, van den Dobbelsteen DJ, Orrenius S (1995) Signalling mechanisms and oxidative stress in apoptosis. Toxicol Lett 82–83:149–153

    Article  PubMed  Google Scholar 

  • Sokol-Anderson ML, Brajtburg J, Medoff G (1986) Amphotericin B-induced oxidative damage and killing of Candida albicans. J Infect Dis 154:76–83

    CAS  PubMed  Google Scholar 

  • Sokol-Anderson MC, Sligh J, Elberg S, Brajtburg J, Kobayashi GS, Medoff G (1988) Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B. Antimicrob Agents Chemother 32:702–705

    CAS  PubMed  Google Scholar 

  • Sternal K, Czub J, Baginski M (2004) Molecular aspects of the interaction between amphotericin B and a phospholipid bilayer: molecular dynamics studies. J Mol Model 10:223–232

    Article  CAS  PubMed  Google Scholar 

  • Strayer DS, Hoek JB, Thomas AP, White MK (1999) Cellular activation by Ca2+ release from stores in the endoplasmic reticulum but not by increased free Ca2+ in the cytosol. Biochem J 344(Pt 1):39–146

    Article  CAS  PubMed  Google Scholar 

  • Sudhandiran G, Shaha C (2003) Antimonial-induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem 278:25120–25132

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Lee CC, Hung WC, Chen FY, Lee MT, Huang HW (2008) The bound states of amphipathic drugs in lipid bilayers: study of curcumin. Biophys J 95:2318–2324

    Article  CAS  PubMed  Google Scholar 

  • Sundar S, Chakravarty J (2010) Liposomal amphotericin B and leishmaniasis: dose and response. J Glob Infect Dis 2:159–166

    Article  PubMed  Google Scholar 

  • Suschek CV, Bonmann E, Kleinert H, Wenzel M, Mahotka C, Kolg H, Forstermann U, Gerharz CD, Kolb-Bachofen V (2000) Amphotericin B severely affects expression and activity of the endothelial constitutive nitric oxide synthase involving altered mRNA stability. Br J Pharmacol 131:473–481

    Article  CAS  PubMed  Google Scholar 

  • Suschek CV, Bonmann E, Kapsokefalou A, Hemmrich K, Kleinert H, Förstermann U, Kröncke KD, Mahotka C, Kolb-Bachofen V (2002) Revisiting an old antimicrobial drug: amphotericin B induces interleukin-1-converting enzyme as the main factor for inducible nitric-oxide synthase expression in activated endothelia. Mol Pharmacol 62:936–946

    Article  CAS  PubMed  Google Scholar 

  • Szponarski W, Bolard J (1987) Temperature-dependent modes for the binding of the polyene amphotericin B to human erythrocyte membranes: a circular dichroism study. Biochim Bophys Acta 897:229–237

    Article  CAS  Google Scholar 

  • Tafforeau L, Le Blastier S, Bamps S, Dewez M, Vandenhaute J, Hamand D (2006) Repression of ergosterol level during oxidative stress by fission yeast F-box protein Pof14 independently of SCF. EMBO J 25:4547–4556

    Article  CAS  PubMed  Google Scholar 

  • te Welscher YM, ten Napel HH, Balagué MM, Souza CM, Riezman H, de Kruijff B, Breukink E (2008) Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J Biol Chem 283:6393–6401

    Article  CAS  PubMed  Google Scholar 

  • Tejuca M, Dalla Serra M, Potrich C, Alvarez C, Menestrina G (2001) Sizing the radius of the pore formed in erythrocytes and lipid vesicles by the toxin sticholysin I from the sea anemone Stichodactyla helianthus. J Membr Biol 183:125–135

    Article  CAS  PubMed  Google Scholar 

  • Tohyama M, Kawahami K, Saito A (1996) Anticryptococcal effect of amphotericin B is mediated through macrophage production of nitric oxide. Antimicrob Agents Chemother 40:1919–1923

    CAS  PubMed  Google Scholar 

  • Turtinen LW, Croswell A, Obr A (2008) Microarray analysis of amphotericin B-treated THP-1 monocytic cells identifies unique gene expression profiles among lipid and non-lipid drug formulations. J Chemother 20:327–335

    CAS  PubMed  Google Scholar 

  • Ullmann BD, Myers H, Chiranand W, Lazzell AL, Zhao Q, Vega LA, Lopez-Ribot JL, Gardner PR, Gustin MC (2004) Inducible defense mechanism against nitric oxide in Candida albicans. Eukaryot Cell 3:715–723

    Article  CAS  PubMed  Google Scholar 

  • Urbina JA (1997) Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites. Parasitology 114:S91–S99

    PubMed  Google Scholar 

  • Urbina JA, Pekerar S, Le HB, Patterson J, Montez B, Oldfield E (1995) Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: a comparative study using 2H-, 13C- and 31P-NMR spectroscopy. Biochim Biophys Acta 1238:163–176

    Article  PubMed  Google Scholar 

  • Valdivieso E (1992) Estudio de la selectividad ionica inducida por el antibiotico polienico Anfotericina B en sistemas naturales y artificiales, Central University of Venezuela, Caracas

  • Van Hoogevest P, De Kruijff B (1978) Effect of amphotericin B on cholesterol-containing liposomes of egg phosphatidylcholine and didocosenoyl phosphatidylcholine. A refinement of the model for the formation of pores by amphotericin B in membranes. Biochim Biophys Acta 511:397–407

    Article  PubMed  Google Scholar 

  • Venegas B, González-Damián J, Celis H, Ortega-Blake I (2003) Amphotericin B channels in the bacterial membrane: role of sterol and temperature. Biophys J 85:2323–2332

    Article  CAS  PubMed  Google Scholar 

  • Vercesi AE, Docampo R (1992) Ca2+ transport by digitonin-permeabilized Leishmania donovani. Effects of Ca2+, pentamidine and WR-6026 on mitochondrial membrane potential in situ. Biochem J 284:463–467

    CAS  PubMed  Google Scholar 

  • Verma NK, Dey CS (2004) Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 48:3010–3015

    Article  CAS  PubMed  Google Scholar 

  • Vieira LL, Lafuente E, Gamarro F, Cabantchik Z (1996) An amino acid channel activated by hypotonically induced swelling of Leishmania major promastigotes. Biochem J 319(Pt 3):691–697

    CAS  PubMed  Google Scholar 

  • Vincent N, Genin C, Malvoisin E (2002) Identification of a conserved domain of the HIV-1 transmembrane protein gp41 which interacts with cholesteryl groups. Biochim Biophys Acta 1567:157–163

    Article  CAS  PubMed  Google Scholar 

  • Vinciguerra M, Deschênes G, Hasler U, Mordasini D, Rousselot M, Doucet A, Vandewalle A, Martin PY, Féraille E (2003) Intracellular Na+ controls cell surface expression of Na, K-ATPase via a cAMP-independent PKA pathway in mammalian kidney collecting duct cells. Mol Biol Cell 14:2677–2688

    Article  CAS  PubMed  Google Scholar 

  • Waheed AA, Ablan SD, Mankowski MK, Cummins JE, Ptak RG, Schaffner CP, Freed EO (2006) Inhibition of HIV-1 replication by amphotericin B methyl ester: selection for resistant variants. J Biol Chem 281:28699–286711

    Article  CAS  PubMed  Google Scholar 

  • Walev I, Bhakdi S (1996) Possible reason for preferential damage to renal tubular epithelial cells evoked by amphotericin B. Antimicrob Agents Chemother 40:1116–1120

    CAS  PubMed  Google Scholar 

  • Wazny LD, Brophy DF (2000) Amiloride for the prevention of amphotericin B-induced hypokalemia and hypomagnesemia. Ann Pharmacother 34:94–97

    Article  CAS  PubMed  Google Scholar 

  • Wietzerbin J, Szponarski W, Gary-Bobo C (1990) Kinetic study of interaction between [14C] amphotericin B derivatives and human erythrocytes: relationship between binding and induced K+ leak. Biochim Biophys Acta 1026:93–98

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem 276:33540–33546

    Article  CAS  PubMed  Google Scholar 

  • Yano T, Itoh Y, Kawamura E, Maeda A, Egashira N, Nishida M, Kurose H, Oishi R (2009) Amphotericin B-induced renal tubular cell injury is mediated by Na+ influx through ion-permeable pores and subsequent activation of mitogen-activated protein kinases and elevation of intracellular Ca2+ concentration. Antimicrob Agents Chemother 53:1420–1426

    Article  CAS  PubMed  Google Scholar 

  • Zager RA (2000) Polyene antibiotics: relative degrees of in vitro cytotoxicity and potential effects on tubule phospholipid and ceramide content. Am J Kidney Dis 36:238–249

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Eleazar Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, B.E. Amphotericin B Membrane Action: Role for Two Types of Ion Channels in Eliciting Cell Survival and Lethal Effects. J Membrane Biol 238, 1–20 (2010). https://doi.org/10.1007/s00232-010-9313-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9313-y

Keywords

Navigation