Skip to main content
Log in

The Intracellular Localization and Function of the ATP-Sensitive K+ Channel Subunit Kir6.1

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Our aim was to determine the subcellular localization and functional roles of the KATP channel subunit Kir6.1 in intracellular membranes. Specifically, we focused on the potential role of Kir6.1 as a subunit of the mitochondrial ATP-sensitive K+ channel. Cell imaging showed that a major proportion of heterologously expressed Kir6.1-GFP and endogenously expressed Kir6.1 was distributed in the endoplasmic reticulum with little in the mitochondria or plasma membrane. We used pharmacological and molecular tools to investigate the functional significance of this distribution. The KATP channel opener diazoxide increased reactive oxygen species production, and glibenclamide abolished this effect. However, in cells lacking Kir6.1 or expressing siRNA or dominant negative constructs of Kir6.1, the same effect was seen. Ca2+ handling was examined in the muscle cell line C2C12. Transfection of the dominant negative constructs of Kir6.1 significantly reduced the amplitude and rate of rise of [Ca2+] c transients elicited by ATP. This study suggests that Kir6.1 is located in the endoplasmic reticulum and plays a role in modifying Ca2+ release from intracellular stores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ardehali H, Chen Z, Ko Y, Mejia-Alvarez R, Marban E (2004) Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity. Proc Natl Acad Sci USA 101:11880–11885

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft FM, Gribble FM (1998) Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci 21:288–294

    Article  CAS  PubMed  Google Scholar 

  • Babenko AP, AguilarBryan L, Bryan J (1998) A view of SUR/KIR6.X, KATP channels. Annu Rev Physiol 60:667–687

    Article  CAS  PubMed  Google Scholar 

  • Bolsover S, Ibrahim O, O’luanaigh N, Williams H, Cockcroft S (2001) Use of fluorescent Ca2+ dyes with green fluorescent protein and its variants: problems and solutions. Biochem J 356:345–352

    Article  CAS  PubMed  Google Scholar 

  • Coronado R, Miller C (1980) Decamethonium and hexamethonium block K+ channels of sarcoplasmic reticulum. Nature 288:495–497

    Article  CAS  PubMed  Google Scholar 

  • Costa AD, Garlid KD (2008) Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT. Am J Physiol 295:H874–H882

    CAS  Google Scholar 

  • Costa AD, Pierre SV, Cohen MV, Downey JM, Garlid KD (2008) cGMP signalling in pre- and post-conditioning: the role of mitochondria. Cardiovasc Res 77:344–352

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Giblin JP, Clapp LH, Tinker A (2001) A mechanism for ATP-sensitive potassium channel diversity: functional coassembly of two pore forming subunits. Proc Natl Acad Sci USA 98:729–734

    Article  CAS  PubMed  Google Scholar 

  • Cuong DV, Kim N, Joo H, Youm JB, Chung JY, Lee Y, Park WS, Kim E, Park YS, Han J (2005) Subunit composition of ATP-sensitive potassium channels in mitochondria of rat hearts. Mitochondrion 5:121–133

    Article  PubMed  Google Scholar 

  • Das M, Parker JE, Halestrap AP (2003) Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive KATP channels in rat mitochondria. J Physiol 547:893–902

    Article  CAS  PubMed  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  • Fialka I, Pasquali C, Lottspeich F, Ahorn H, Huber LA (1997) Subcellular fractionation of polarized epithelial cells and identification of organelle-specific proteins by two-dimensional gel electrophoresis. Electrophoresis 18:2582–2590

    Article  CAS  PubMed  Google Scholar 

  • Forbes RA, Steenbergen C, Murphy E (2001) Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 88:802–809

    Article  CAS  PubMed  Google Scholar 

  • Foster DB, Rucker JJ, Marban E (2008) Is Kir6.1 a subunit of mitoK(ATP)? Biochem Biophys Res Commun 366:649–656

    Article  CAS  PubMed  Google Scholar 

  • Fryer RM, Eells JT, Hsu AK, Henry MM, Gross GJ (2000) Ischemic preconditioning in rats: role of mitochondrial K(ATP) channel in preservation of mitochondrial function. Am J Physiol 278:H305–H312

    CAS  Google Scholar 

  • Gamper N, Shapiro MS (2007) Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci 8:921–934

    Article  CAS  PubMed  Google Scholar 

  • Garcia AM, Miller C (1984) Channel-mediated monovalent cation fluxes in isolated sarcoplasmic reticulum vesicles. J Gen Physiol 83:819–839

    Article  CAS  PubMed  Google Scholar 

  • Hanley PJ, Mickel M, Loffler M, Brandt U, Daut J (2002) K(ATP) channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol 542:735–741

    Article  CAS  PubMed  Google Scholar 

  • Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247

    Article  CAS  PubMed  Google Scholar 

  • Lacza Z, Snipes JA, Miller AW, Szabo C, Grover G, Busija DW (2003) Heart mitochondria contain functional ATP-dependent K+ channels. J Mol Cell Cardiol 35:1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Leaney JL, Dekker LV, Tinker A (2001) Regulation of a G-protein gated inwardly rectifying potassium channel by a Ca2+-independent protein kinase C. J Physiol Lond 534:367–379

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ren G, O’Rourke B, Marban E, Seharaseyon J (2001) Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. Mol Pharmacol 59:225–230

    CAS  PubMed  Google Scholar 

  • Ma D, Zerangue N, Lin YF, Collins A, Yu M, Jan YN, Jan LY (2001) Role of ER export signals in controlling surface potassium channel numbers. Science 291:316–319

    Article  CAS  PubMed  Google Scholar 

  • Paucek P, Mironova G, Mahdi F, Beavis AD, Woldegiorgis G, Garlid KD (1992) Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J Biol Chem 267:26062–26069

    CAS  PubMed  Google Scholar 

  • Quinn KV, Cui Y, Giblin JP, Clapp LH, Tinker A (2003) Do anionic phospholipids serve as cofactors or second messengers for the regulation of activity of cloned ATP-sensitive K+ channels? Circ Res 93:646–655

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo GC, Standen NB (2005) ATP-sensitive potassium channels. Curr Pharm Des 11:1915–1940

    Article  CAS  PubMed  Google Scholar 

  • Salkoff L, Wei AD, Baban B, Butler A, Fawcett G, Ferreira G, Santi CM (2005) Potassium channels in C. elegans. WormBook 1–15

  • Seino S (1999) ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol 61:337–362

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Kotake K, Fujikura K, Inagaki N, Suzuki T, Gonoi T, Seino S, Takata K (1997) Kir6.1: a possible subunit of ATP-sensitive K+ channels in mitochondria. Biochem Biophys Res Commun 241:693–697

    Article  CAS  PubMed  Google Scholar 

  • Tinker A, Lindsay AR, Wlliams AJ (1992) A model for ionic conduction in the ryanodine receptor channel of sheep cardiac muscle sarcoplasmic reticulum. J Gen Physiol 100:495–517

    Article  CAS  PubMed  Google Scholar 

  • Urabe M, Kume A, Tobita K, Ozawa K (2000) DNA/calcium phosphate precipitates mixed with medium are stable and maintain high transfection efficiency. Anal Biochem 278:91–92

    Article  CAS  PubMed  Google Scholar 

  • Voelker DR (1996) Lipid assembly into cell membranes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes. Elsevier, Amsterdam, pp 391–423

    Chapter  Google Scholar 

  • Wang Y, Ashraf M (1999) Role of protein kinase C in mitochondrial KATP channel-mediated protection against Ca2+ overload injury in rat myocardium. Circ Res 84:1156–1165

    CAS  PubMed  Google Scholar 

  • White SM, Constantin PE, Claycomb WC (2004) Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am J Physiol 286:H823–H829

    CAS  Google Scholar 

  • Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151

    CAS  PubMed  Google Scholar 

  • Zhou M, Tanaka O, Sekiguchi M, He HJ, Yasuoka Y, Itoh H, Kawahara K, Abe H (2005) ATP-sensitive K+-channel subunits on the mitochondria and endoplasmic reticulum of rat cardiomyocytes. J Histochem Cytochem 53:1491–1500

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was funded by the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Tinker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, KE., Schwarzer, S., Duchen, M.R. et al. The Intracellular Localization and Function of the ATP-Sensitive K+ Channel Subunit Kir6.1. J Membrane Biol 234, 137–147 (2010). https://doi.org/10.1007/s00232-010-9241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9241-x

Keywords

Navigation