Skip to main content
Log in

Minimal RNA Aptamer Sequences That Can Inhibit or Alleviate Noncompetitive Inhibition of the Muscle-Type Nicotinic Acetylcholine Receptor

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Combinatorially synthesized nucleotide polymers have been used during the last decade to find ligands that bind to specific sites on biological molecules, including membrane-bound proteins such as the nicotinic acetylcholine receptors (nAChRs). The neurotransmitter receptors belong to a group of four structurally related proteins that regulate signal transmission between ~1011 neurons of the mammalian nervous system. The nAChRs are inhibited by compounds such as the anticonvulsant MK-801 [(+)-dizocilpine] and abused drugs such as cocaine. Based on predictions arising from the mechanism of receptor inhibition by MK-801 and cocaine, we developed two classes of RNA aptamers: class I members, which inhibit the nAChR, and class II members, which alleviate inhibition of the receptor by MK-801 and cocaine. The systematic evolution of ligands by the exponential enrichment (SELEX) method was used to obtain these compounds. Here, we report that we have truncated RNA aptamers in each class to determine the minimal nucleic acid sequence that retains the characteristic function for which the aptamer was originally selected. We demonstrate that a truncated class I aptamer containing a sequence of seven nucleotides inhibits the nAChR and that a truncated class II aptamer containing a sequence of only four nucleotides can alleviate MK-801 inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguayo LG, Albuquerque EX (1986) Effects of phencyclidine and its analogs on the end-plate current of the neuromuscular junction. J Pharmacol Exp Ther 239:15–24

    CAS  PubMed  Google Scholar 

  • Ansai T, Chen X, Barik S, Takehara T (2002) Conserved proline residues near the N-terminus are important for enzymatic activity of class A bacterial acid phosphatases. Arch Biochem Biophys 408:144–146

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DA, Seidman JG, Smith JA, Struhl K (1999) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Blank M, Blind M (2005) Aptamers as tools for target validation. Curr Opin Chem Biol 9:336–342

    Article  CAS  PubMed  Google Scholar 

  • Broadley KJ (1996) Autonomic pharmacology. Taylor and Francis, London

    Google Scholar 

  • Brockstedt U, Uzarowska A, Montpetit A, Pfau W, Labuda D (2004) In vitro evolution of RNA aptamers recognizing carcinogenic aromatic amines. Biochem Biophys Res Commun 313:1004–1008

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Banerjee A, Hess GP (2004) Mechanism-based discovery of small molecules that prevent noncompetitive inhibition by cocaine and MK-801 mediated by two different sites on the nicotinic acetylcholine receptor. Biochemistry 43:10149–10156

    Article  CAS  PubMed  Google Scholar 

  • Colquhoun D, Sakmann B (1998) From muscle endplate to brain synapses: a short history of synapses and agonist-activated ion channels. Neuron 20:381–387

    Article  CAS  PubMed  Google Scholar 

  • Eder M, Stolz M, Wallimann T, Schlattner U (2000) A conserved negatively charged cluster in the active site of creatine kinase is critical for enzymatic activity. J Biol Chem 275:27094–27099

    CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Gold L (1995) Oligonucleotides as research, diagnostic, and therapeutic agents. J Biol Chem 270:13581–13584

    CAS  PubMed  Google Scholar 

  • Grewer C, Hess GP (1999) On the mechanism of inhibition of the nicotinic acetylcholine receptor by the anticonvulsant MK-801 investigated by laser-pulse photolysis in the microsecond-to-millisecond time region. Biochemistry 38:7837–7846

    Article  CAS  PubMed  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch 391:85–100

    Article  CAS  Google Scholar 

  • Hammes G (2000) Thermodynamics and kinetics for the biological sciences. Wiley, New York

    Google Scholar 

  • Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Gilman A (1996) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York

    Google Scholar 

  • Hess GP (2003) Rapid chemical reaction techniques developed for use in investigations of membrane-bound proteins (neurotransmitter receptors). Biophys Chem 100:493–506

    Article  CAS  PubMed  Google Scholar 

  • Hess GP (2005) Photochemical release of neurotransmitters—transient kinetic investigations of membrane-bound receptors on the surface of cells in the microsecond-to-millisecond time region. In: Goldner M, Givens R (eds) Dynamic studies in biology phototriggers, photoswitches and caged biomolecules. Wiley, New York

    Google Scholar 

  • Hess GP, Grewer C (1998) Development and application of caged ligands for neurotransmitter receptors in transient kinetic and neuronal circuit mapping studies. Methods Enzymol 291:443–473

    Article  CAS  PubMed  Google Scholar 

  • Hess GP, Ulrich H, Breitinger HG, Niu L, Gameiro AM, Grewer C, Srivastava S, Ippolito JE, Lee SM, Jayaraman V, Coombs SE (2000) Mechanism-based discovery of ligands that counteract inhibition of the nicotinic acetylcholine receptor by cocaine and MK-801. Proc Natl Acad Sci USA 97:13895–13900

    Article  CAS  PubMed  Google Scholar 

  • Hess GP, Gameiro AM, Schoenfeld RC, Chen Y, Ulrich H, Nye JA, Sit B, Carroll FI, Ganem B (2003) Reversing the action of noncompetitive inhibitors (MK-801 and cocaine) on a protein (nicotinic acetylcholine receptor)-mediated reaction. Biochemistry 42:6106–6114

    Article  CAS  PubMed  Google Scholar 

  • Hirao I, Harada Y, Nojima T, Osawa Y, Masaki H, Yokoyama S (2004) In vitro selection of RNA aptamers that bind to colicin E3 and structurally resemble the decoding site of 16S ribosomal RNA. Biochemistry 43:3214–3221

    Article  CAS  PubMed  Google Scholar 

  • Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    CAS  PubMed  Google Scholar 

  • Jia Y, Patel SS (1997) Kinetic mechanism of transcription initiation by bacteriophage T7 RNA polymerase. Biochemistry 36:4223–4232

    Article  CAS  PubMed  Google Scholar 

  • Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114

    Article  CAS  PubMed  Google Scholar 

  • Kates SA, Albericio F (2000) Solid-phase synthesis: a practical guide. Marcel Dekker, New York

    Google Scholar 

  • Katz EJ, Cortes VI, Eldefrawi ME, Eldefrawi AT (1997) Chlorpyrifos, parathion, and their oxons bind to and desensitize a nicotinic acetylcholine receptor: relevance to their toxicities. Toxicol Appl Pharmacol 146:227–236

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi K, Umehara T, Fukuda K, Kuno A, Hasegawa T, Nishikawa S (2005) A hepatitis C virus (HCV) internal ribosome entry site (IRES) domain III-IV-targeted aptamer inhibits translation by binding to an apical loop of domain IIId. Nucleic Acids Res 33:683–692

    Article  CAS  PubMed  Google Scholar 

  • Krishtal OA, Pidoplichko VI (1980) A receptor for protons in the nerve cell membrane. Neuroscience 5:2325–2327

    Article  CAS  PubMed  Google Scholar 

  • Lauhon CT, Szostak JW (1995) RNA factors that bind flavin and nicotinamide redox cofactors. J Am Chem Soc 117:1246–1257

    Article  CAS  PubMed  Google Scholar 

  • Le Novere N, Grutter T, Changeux JP (2002) Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2+-binding sites. Proc Natl Acad Sci USA 99:3210–3215

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Cao G, Ding H, Zhang D, Yang G, Liu N, Fan M, Shen B, Shao N (2004) Screening of functional antidotes of RNA aptamers against bovine thrombin. FEBS Lett 562:125–128

    Article  CAS  PubMed  Google Scholar 

  • Matsubara N, Billington AP, Hess GP (1992) How fast does an acetylcholine receptor channel open? Laser-pulse photolysis of an inactive precursor of carbamoylcholine in the microsecond time region with BC3H1 cells. Biochemistry 31:5507–5514

    Article  CAS  PubMed  Google Scholar 

  • Milburn T, Matsubara N, Billington AP, Udgaonkar JB, Walker JW, Carpenter BK, Webb WW, Marque J, Denk W, McCray JA, Hess GP (1989) Synthesis, photochemistry, and biological activity of a caged photolabile acetylcholine receptor ligand. Biochemistry 28:49–55

    Article  CAS  PubMed  Google Scholar 

  • Milligan JF, Uhlenbeck OC (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180:51–62

    Article  CAS  PubMed  Google Scholar 

  • Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132

    Article  CAS  PubMed  Google Scholar 

  • Niu L, Hess GP (1993) An acetylcholine receptor regulatory site in BC3H1 cells: characterized by laser-pulse photolysis in the microsecond-to-millisecond time region. Biochemistry 32:3831–3835

    Article  CAS  PubMed  Google Scholar 

  • Niu L, Abood LG, Hess GP (1995) Cocaine: mechanism of inhibition of a muscle acetylcholine receptor studied by a laser-pulse photolysis technique. Proc Natl Acad Sci USA 92:12008–12012

    Article  CAS  PubMed  Google Scholar 

  • Owczarzy R, Tataurov AT, Wu Y, Manthey JA, McQuisten K, Almabrazi HG, Pedersen KF, Lin Y, Garretson J, McEntaggart N, Sailor CA, Dawson RB, Peek AS (2008) IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res 36:W163–W169

    Article  CAS  PubMed  Google Scholar 

  • Park H, Sternglanz R (1998) Two separate conserved domains of eukaryotic DNA topoisomerase I bind to each other and reconstitute enzymatic activity. Chromosoma 107:211–215

    Article  CAS  PubMed  Google Scholar 

  • Pendergrast PS, Marsh HN, Grate D, Healy JM, Stanton M (2005) Nucleic acid aptamers for target validation and therapeutic applications. J Biomol Tech 16:224–234

    PubMed  Google Scholar 

  • Proske D, Blank M, Buhmann R, Resch A (2005) Aptamers–basic research, drug development, and clinical applications. Appl Microbiol Biotechnol 69:367–374

    Article  CAS  PubMed  Google Scholar 

  • Raines DE, Zachariah VT (1999) Isoflurane increases the apparent agonist affinity of the nicotinic acetylcholine receptor. Anesthesiology 90:135–146

    Article  CAS  PubMed  Google Scholar 

  • Ramoa AS, Alkondon M, Aracava Y, Irons J, Lunt GG, Deshpande S, Wonnacott S, Aronstam RS, Albuquerque EX (1990) The anticonvulsant MK-801 interacts with peripheral and central nicotinic acetylcholine receptor ion channels. J Pharmacol Exp Ther 254:71–82

    CAS  PubMed  Google Scholar 

  • Robertson MP, Igel H, Baertsch R, Haussler D, Ares M Jr, Scott WG (2005) The structure of a rigorously conserved RNA element within the SARS virus genome. PLoS Biol 3:e5

    Article  PubMed  Google Scholar 

  • Rockhold RW, Surrett RS, Acuff CG, Zhang T, Hoskins B, Ho IK (1992) Antagonism of the toxicity of cocaine by MK-801: differential effects in spontaneously hypertensive and Wistar-Kyoto rats. Neuropharmacology 31:1269–1277

    Article  CAS  PubMed  Google Scholar 

  • Sakmann B, Neher E (eds) (1995) Single-channel recording. Plenum Press, New York

    Google Scholar 

  • Schapira M, Abagyan R, Totrov M (2002) Structural model of nicotinic acetylcholine receptor isotypes bound to acetylcholine and nicotine. BMC Struct Biol 2:1–4

    Article  PubMed  Google Scholar 

  • Schubert D, Harris AJ, Devine CE, Heinemann S (1974) Characterization of a unique muscle cell line. J Cell Biol 61:398–413

    Article  CAS  PubMed  Google Scholar 

  • Szostak JW (1986) Enzymatic activity of the conserved core of a group I self-splicing intron. Nature 322:83–86

    Article  CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  • Udgaonkar JB, Hess GP (1987) Chemical kinetic measurements of a mammalian acetylcholine receptor by a fast-reaction technique. Proc Natl Acad Sci USA 84:8758–8762

    Article  CAS  PubMed  Google Scholar 

  • Ulrich H, Ippolito JE, Pagan OR, Eterovic VA, Hann RM, Shi H, Lis JT, Eldefrawi ME, Hess GP (1998) In vitro selection of RNA molecules that displace cocaine from the membrane-bound nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 95:14051–14056

    Article  CAS  PubMed  Google Scholar 

  • Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346:967–989

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Institutes of Health grant (DA 11643) awarded to G. P. H and Robert E. Oswald and an NIH-MARC Faculty Predoctoral Fellowship (F34 GM20771) awarded to O. R. P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George P. Hess.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 924 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivaprakasam, K., Pagán, O.R. & Hess, G.P. Minimal RNA Aptamer Sequences That Can Inhibit or Alleviate Noncompetitive Inhibition of the Muscle-Type Nicotinic Acetylcholine Receptor. J Membrane Biol 233, 1–12 (2010). https://doi.org/10.1007/s00232-009-9215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-009-9215-z

Keywords

Navigation