Skip to main content
Log in

Effect of Ceramide on Nonraft Proteins

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The currently accepted model of biological membranes involves a heterogeneous, highly dynamic organization, where certain lipids and proteins associate to form cooperative platforms (“rafts”) for cellular signaling or transport processes. Ceramides, a lipid species occurring under conditions of cellular stress and apoptosis, are considered to stabilize these platforms, thus modulating cellular function. The present study focuses on a previously unrecognized effect of ceramide generation. In agreement with previous studies, we find that ceramide leads to a depletion of sphingomyelin from mixtures with palmitoyl oleoyl phosphatidylcholine bilayers, forming a ceramide–sphingomyelin-rich gel phase that coexists with a fluid phase rich in palmitoyl oleoyl phosphatidylcholine. Interestingly, however, this latter phase has an almost fourfold smaller bending rigidity compared to a sphingomyelin–palmitoyl oleoyl phosphatidylcholine mixture lacking ceramide. The significant change of membrane bulk properties can have severe consequences for conformational equilibria of membrane proteins. We discuss these effects in terms of the lateral pressure profile concept for a simple geometric model of an ion channel and find a significant inhibition of its activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angelova MI, Dimitrov DS (1986) Lipsome electroformation. Faraday Discuss Chem Soc 81:303–311

    Article  CAS  Google Scholar 

  • Baumgart T, Das S, Webb WW, Jenkins JT (2005) Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys J 89:1067–1080

    Article  CAS  PubMed  Google Scholar 

  • Ben Shaul A (1995) Molecular theory of chain packing, elasticity and lipid–protein interaction in lipid bilayers. In: Lipowsky R, Sackmann E (eds) Handbook of biological physics. Elsevier, Amsterdam, pp 359–401

    Google Scholar 

  • Brown DA (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology (Bethesda) 21:430–439

    CAS  Google Scholar 

  • Cantor RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem B 101:1723–1725

    Article  CAS  Google Scholar 

  • Cantor RS (1999a) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76:2625–2639

    Article  CAS  PubMed  Google Scholar 

  • Cantor RS (1999b) The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem Phys Lipids 101:45–56

    Article  CAS  PubMed  Google Scholar 

  • Castro BM, de Almeida RF, Silva LC, Fedorov A, Prieto M (2007) Formation of ceramide/sphingomyelin gel domains in the presence of an unsaturated phospholipid: a quantitative multiprobe approach. Biophys J 93:1639–1650

    Article  CAS  PubMed  Google Scholar 

  • Castro BM, Silva LC, Fedorov A, de Almeida RF, Prieto M (2009) Cholesterol-rich fluid membranes solubilize ceramide domains: implications for the structure and dynamics of mammalian intracellular and plasma membrane. J Biol Chem 284:22978–22987

    Article  CAS  PubMed  Google Scholar 

  • Fidorra M, Duelund L, Leidy C, Simonsen AC, Bagatolli LA (2006) Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC mixtures containing cholesterol. Biophys J 90:4437–4451

    Article  CAS  PubMed  Google Scholar 

  • Goni FM, Alonso A (2006) Biophysics of sphingolipids I Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta 1758:1902–1921

    Article  CAS  PubMed  Google Scholar 

  • Holopainen JM, Angelova MI, Kinnunen PK (2000a) Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J 78:830–838

    Article  CAS  PubMed  Google Scholar 

  • Holopainen JM, Lemmich J, Richter F, Mouritsen OG, Rapp G, Kinnunen PK (2000b) Dimyristoylphosphatidylcholine/C16:0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle X-ray scattering. Biophys J 78:2459–2469

    Article  CAS  PubMed  Google Scholar 

  • Kucerka N, Tristram-Nagle S, Nagle JF (2005) Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J Membr Biol 208:193–202

    Article  CAS  PubMed  Google Scholar 

  • Mannock DA, McIntosh TJ, Jiang X, Covey DF, McElhaney RN (2003) Effects of natural and enantiomeric cholesterol on the thermotropic phase behavior and structure of egg sphingomyelin bilayer membranes. Biophys J 84:1038–1046

    Article  CAS  PubMed  Google Scholar 

  • McIntosh TJ, Magid AD, Simon SA (1987) Steric repulsion between phosphatidylcholine bilayers. Biochemistry 26:7325–7332

    Article  CAS  PubMed  Google Scholar 

  • Pabst G, Rappolt M, Amenitsch H, Laggner P (2000) Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality X-ray data. Phys Rev E 62:4000–4009

    Article  CAS  Google Scholar 

  • Pabst G, Danner S, Podgornik R, Katsaras J (2007a) Entropy-driven softening of fluid lipid bilayers by alamethicin. Langmuir 23:11705–11711

    Article  CAS  PubMed  Google Scholar 

  • Pabst G, Hodzic A, Strancar J, Danner S, Rappolt M, Laggner P (2007b) Rigidification of neutral lipid bilayers in the presence of salts. Biophys J 93:2688–2696

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Tieleman DP, Nagle JF, Kucerka N, Tristram-Nagle S (2009) Alamethicin in lipid bilayers: combined use of X-ray scattering and MD simulations. Biochim Biophys Acta 1788:1387–1397

    Article  CAS  PubMed  Google Scholar 

  • Parsegian VA, Rand RP (1995) Interaction in membrane assemblies. In: Lipowsky R, Sackmann E (eds) Handbook of biological physics. Elsevier, Amsterdam, pp 643–690

    Google Scholar 

  • Petrache HI, Gouliaev N, Tristram-Nagle S, Zhang RT, Suter RM, Nagle JF (1998) Interbilayer interactions from high-resolution X-ray scattering. Phys Rev E 57:7014–7024

    Article  CAS  Google Scholar 

  • Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47:1597–1598

    Article  CAS  PubMed  Google Scholar 

  • Podgornik R, Parsegian VA (1992) Thermal mechanical fluctuations of fluid membranes in confined geometries—the case of soft confinement. Langmuir 8:557–562

    Article  CAS  Google Scholar 

  • Podgornik R, French RH, Parsegian VA (2006) Nonadditivity in van der Waals interactions within multilayers. J Chem Phys 124:044709

    Article  CAS  PubMed  Google Scholar 

  • Posse de Chaves EI (2006) Sphingolipids in apoptosis, survival and regeneration in the nervous system. Biochim Biophys Acta 1758:1995–2015

    Article  CAS  PubMed  Google Scholar 

  • Rankin SE, Addona GH, Kloczewiak MA, Bugge B, Miller KW (1997) The cholesterol dependence of activation and fast desensitization of the nicotinic acetylcholine receptor. Biophys J 73:2446–2455

    Article  CAS  PubMed  Google Scholar 

  • Seddon JM, Templer RH (1995) Polymorphism of lipid water systems. In: Lipowsky R, Sackmann E (eds) Structure and dynamics of membranes. North-Holland, Amsterdam, pp 97–160

    Chapter  Google Scholar 

  • Shah J, Atienza JM, Duclos RI Jr, Rawlings AV, Dong Z, Shipley GG (1995) Structural and thermotropic properties of synthetic C16:0 (palmitoyl) ceramide: effect of hydration. J Lipid Res 36:1936–1944

    CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Staneva G, Chachaty C, Wolf C, Koumanov K, Quinn PJ (2008) The role of sphingomyelin in regulating phase coexistence in complex lipid model membranes: competition between ceramide and cholesterol. Biochim Biophys Acta 1778:2727–2739

    Article  CAS  PubMed  Google Scholar 

  • Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43

    Article  CAS  PubMed  Google Scholar 

  • Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346:967–989

    Article  CAS  PubMed  Google Scholar 

  • van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M, Borst J (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 369:199–211

    Article  PubMed  Google Scholar 

  • Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7:9–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Robert Cantor, Hennig von Grünberg and Thomas Stockner for valuable discussions. We further thank Thomas Stockner for allowing us to use his data on the first moment of the lateral pressure profile of POPC prior to publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Pabst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pabst, G., Boulgaropoulos, B., Gander, E. et al. Effect of Ceramide on Nonraft Proteins. J Membrane Biol 231, 125–132 (2009). https://doi.org/10.1007/s00232-009-9211-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-009-9211-3

Keywords

Navigation