Skip to main content
Log in

Regulation of TLR2 Expression and Function in Human Airway Epithelial Cells

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Toll-like receptor (TLR1–6) mRNAs are expressed in normal human bronchial epithelial cells with higher basal levels of TLR3. TLR2 mRNA and plasma membrane protein expression was enhanced by pretreatment with Poly IC, a synthetic double-stranded RNA (dsRNA) known to activate TLR3. Poly IC also enhanced mRNA expression of adaptor molecules (MyD88 and TIRAP) and coreceptors (Dectin-1 and CD14) involved in TLR2 signaling. Additionally, mRNA expression of TLR3 and dsRNA-sensing proteins MDA5 and RIG-I increased following Poly IC treatment. In contrast, basal mRNA expression of TLR5 and TLR2 coreceptor CD36 was reduced by 77% and 62%, respectively. ELISA of apical and basolateral solutions from Poly IC-stimulated monolayers revealed significantly higher levels of IL-6 and GM-CSF compared with the TLR2 ligand PAM3CSK4. Pretreatment with anti-TLR2 blocking antibody inhibited the PAM3CSK4-induced increase in IL-6 secretion after Poly IC exposure. An increase in IL-6 secretion was also observed in cells stimulated with Alternaria extract after pretreatment with Poly IC. However, IL-6 secretion was not stimulated by zymosan or lipothechoic acid (LTA). These data demonstrated that upregulation of TLR2 following exposure to dsRNA enhances functional responses of the airway epithelium to certain (PAM3CSK4), but not all (zymosan, LTA) TLR2 ligands and that this is likely due to differences in coreceptor expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akira S (2003a) Mammalian Toll-like receptors. Curr Opin Immunol 15:5–11

    Article  PubMed  CAS  Google Scholar 

  • Akira S (2003b) Toll-like receptor signaling. J Biol Chem 278:38105–38108

    Article  PubMed  CAS  Google Scholar 

  • Auger F, Gendron M-C, Chamot C, Marano F, Dazy A-C (2006) Responses of well-differentiated nasal epithelial cells exposed to particles: role of the epithelium in airway inflammation. Toxicol Appl Pharmacol 215:285

    Article  PubMed  CAS  Google Scholar 

  • Avila PC, Donnelly S, Dolganov G, Lopez-Souza N, Xu A et al (2005) Toll-like receptor response to rhinovirus infection in airway epithelial cells of healthy subjects. J Allergy Clin Immunol 115(Suppl):206, abstr. 821(2)

    Google Scholar 

  • Bailey KL, Poole JA, Mathisen TL, Wyatt TA, Von Essen SG, Romberger DJ (2008) Toll-like receptor 2 is up-regulated by hog confinement dust in an IL-6 dependent manner in the airway epithelium. Am J Physiol 294:L1049–L1054

    CAS  Google Scholar 

  • Bals R, Hiemstra PS (2004) Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J 23:327–333

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Fenton MJ (2004) Toll-like receptors: function and roles in lung disease. Am J Physiol 286:L887–L892

    CAS  Google Scholar 

  • Beasley R, Coleman ED, Hermon Y, Holst PE, O’Donnell TV, Tobias M (1988) Viral respiratory tract infection and exacerbations of asthma in adult patients. Thorax 43:679–683

    Article  PubMed  CAS  Google Scholar 

  • Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signaling. Nature 430:257–263

    Article  PubMed  CAS  Google Scholar 

  • Bishop B, Lloyd CM (2003) CC chemokine ligand 1 promotes recruitment of eosinophils but not Th2 cells during the development of allergic airways disease. J Immunol 170:4810–4817

    PubMed  CAS  Google Scholar 

  • Buzina W, Raggam RB, Paulitsch A, Heiling B, Marth E (2008) Characterization and temperature-dependent quantification of heat shock protein 60 of the immunogenic fungus Alternaria alternata. Med Mycol 46:627–630

    Article  PubMed  CAS  Google Scholar 

  • Dillon S, Agrawal A, Banerjee K, Letterio J, Denning TL, Oswald-Richter K, Kasprowicz DJ, Kellar K, Pare J, van Dyke T, Ziegler S, Unutmaz D, Pulendran B (2006) Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest 116:916–928

    Article  PubMed  CAS  Google Scholar 

  • Fahey JV, Schaefer TM, Channon JY, Wira CR (2005) Secretion of cytokines and chemokines by polarized human epithelial cells from the female reproductive tract. Hum Reprod 20:1439–1446

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Frey RS, Malik AB (2003) TLR4 signaling induces TLR2 expression in endothelial cells via neutrophil NADPH oxidase. J Clin Invest 112:1234–1243

    PubMed  CAS  Google Scholar 

  • Fransson M, Adner M, Erjefalt J, Jansson L, Uddman R, Cardell LO (2005) Up-regulation of Toll-like receptors 2, 3 and 4 in allergic rhinitis. Respir Res 6:100

    Article  PubMed  CAS  Google Scholar 

  • Fung F, Tappen D, Wood G (2000) Alternaria-associated asthma. Appl Occup Environ Hyg 15:924–927

    Article  PubMed  CAS  Google Scholar 

  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM (2003) Collaborative induction of inflammatory responses by Dectin-1 and Toll-like receptor 2. J Exp Med 197:1107–1117

    Article  PubMed  CAS  Google Scholar 

  • Gentry M, Taormina J, Pyles RB, Yeager L, Kirtley M, Popov VL, Klimpel G, Eaves-Pyles T (2007) Role of primary human alveolar epithelial cells in host defense against Francisella tularensis infection. Infect Immun 75:3969–3978

    Article  PubMed  CAS  Google Scholar 

  • Gern JE (2004) Viral respiratory infection and the link to asthma. Pediatr Infect Dis J 23:S78–S86

    Article  PubMed  Google Scholar 

  • Gern JE, French DA, Grindle KA, Brockman-Schneider RA, Konno S-I, Busse WW (2003) Double-stranded RNA induces the synthesis of specific chemokines by bronchial epithelial cells. Am J Respir Cell Mol Biol 28:731–737

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo J-A, Lloyd CM, Wen D, Albar JP, Wells TNC, Proudfoot A, Martinez A-C, Dorf M, Bjerke T, Coyle AJ, Gutierrez-Ramos J-C (1998) The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. J Exp Med 188:157–167

    Article  PubMed  CAS  Google Scholar 

  • Goodridge HS, Underhill DM (2008) Fungal recognition by TLR2 and Dectin-1 in Toll-like receptors (TLRs) and innate immunity. In: Handbook of experimental pharmacology. Springer-Verlag, Berlin, pp 87–109

  • Greene CM, Carroll TP, Smith SG, Taggart CC, Devaney J, Griffin S, O’Neill SJ, McElvaney NG (2005) TLR-induced inflammation in cystic fibrosis and non-cystic fibrosis airway epithelial cells. J Immunol 174:1638–1646

    PubMed  CAS  Google Scholar 

  • Groskreutz DJ, Monick MM, Powers LS, Yarovinsky TO, Look DC, Hunninghake GW (2006) Respiratory syncytial virus induces TLR3 protein and protein kinase R, leading to increased double-stranded RNA responsiveness in airway epithelial cells. J Immunol 176:1733–1740

    PubMed  CAS  Google Scholar 

  • Gross O, Gewies A, Finger K, Schafer M, Sparwasser T, Peschel C, Forster I, Ruland J (2006) Card9 controls a non-TLR signaling pathway for innate anti-fungal immunity. Nature 442:651–656

    Article  PubMed  CAS  Google Scholar 

  • Hertz CJ, Wu Q, Porter EM, Zhang YJ, Weismuller KH, Godowski PJ, Ganz T, Randell SH, Modlin RL (2003) Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human beta defensin-2. J Immunol 171:6820–6826

    PubMed  CAS  Google Scholar 

  • Hewson CA, Jardine A, Edwards MR, Laza-Stanca V, Johnston SL (2005) Toll-like receptor 3 is induced by and mediates antiviral activity against rhinovirus infection of human bronchial epithelial cells. J Virol 79:12273–12279

    Article  PubMed  CAS  Google Scholar 

  • Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zähringer U, Beutler B (2005) CD36 is a sensor of diacylglycerides. Nature 433:523–527

    Article  PubMed  CAS  Google Scholar 

  • Inouei Y, Matsuwaki Y, Shin SH, Ponikau JU, Kita H (2005) Nonpathogenic, environmental fungi induce activation and degranulation of human eosinophils. J Immunol 175:5439–5447

    Google Scholar 

  • Jacobs AL, Sehgal PB, Julian J, Carson DD (1992) Secretion and hormonal regulation of interleukin-6 production by mouse uterine stromal and polarized epithelial cells cultured in vitro. Endocrinology 131:1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Kauffman HF, van der Heide S (2003) Exposure, sensitization, and mechanisms of fungus-induced asthma. Curr Allergy Asthma Rep 3:430–437

    Article  PubMed  Google Scholar 

  • Kumar A, Zhang J, Yu F-SX (2006) Toll-like receptor 3 agonist poly(I:C)-induced antiviral response in human corneal epithelial cells. Immunology 117:11–21

    Article  PubMed  CAS  Google Scholar 

  • Le Goffic R, Pothlichet J, Vitour D, Fujita T, Meurs E, Chignard M, Si-Tahar M (2007) Cutting edge: influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J Immunol 178:3368–3372

    PubMed  CAS  Google Scholar 

  • Lee HK, Dunzendorfer S, Tobias PS (2004) Cytoplasmic domain-mediated dimerizations of toll-like receptor 4 observed by beta-lactamase enzyme fragment complementation. J Biol Chem 279:10564–10574

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Palmer ML, Maniak PJ, Jang SH, Ryu PD, O’Grady SM (2007) P2Y receptor regulation of sodium transport in human mammary epithelial cells. Am J Physiol 293:C1472–C1480

    Article  CAS  Google Scholar 

  • LeVine AM, Koeningsknecht V, Stark JM (2001) Decreased pulmonary clearance of Streptococcus pneumoniae following influenza A infection in mice. J Virol Methods 94:173–186

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Boyanapalli M, Weihua X, Kalvakolanu DV, Hassel B (1998) Induction of interferon synthesis and activation of interferon-stimulated genes by liposomal transfection reagents. J Interferon Cytokine Res 18:947–952

    PubMed  CAS  Google Scholar 

  • Lukacs NW, Standiford TJ, Chensue SW, Kunkel RG, Strieter RM, Kunkel SL (1996) C–C chemokine-induced eosinophil chemotaxis during allergic airway inflammation. J Leukoc Biol 60:573–578

    PubMed  CAS  Google Scholar 

  • Mallia P, Johnston SL (2006) How viral infections cause exacerbation of airway diseases. Chest 130:1203–1210

    Article  PubMed  Google Scholar 

  • Martin TR, Frevert CW (2005) Innate immunity in the lungs. Proc Am Thorac Soc 2:403–411

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas JO, Goodrich ME, Eichelberger H, McGee GW (1996) Polarized secretion of IL-6 by IEC-6 intestinal epithelial cells: differential effects of IL-1β and TNF-α. Immunol Invest 25:333–340

    Article  PubMed  CAS  Google Scholar 

  • Matsukura S, Kokubu F, Kurokawa M, Kawaguchi M, Ieki K, Kuga H, Odaka M, Suzuki S, Watanabe S, Takeuchi H, Kasama T, Adachi M (2006) Synthetic double-stranded RNA induces multiple genes related to inflammation through Toll-like receptor 3 depending on NF-κB and/or IRF-3 in airway epithelial cells. Clin Exp Allergy 36:1049

    Article  PubMed  CAS  Google Scholar 

  • Mayer AK, Muehmer M, Mages J, Gueinzius K, Hess C, Heeg K, Bals R, Lang R, Dalpke AH (2007) Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells. J Immunol 178:3134–3142

    PubMed  CAS  Google Scholar 

  • Meylan E, Tschopp J (2006) Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell 22:561–569

    Article  PubMed  CAS  Google Scholar 

  • Muir A, Soong G, Sokol S, Reddy B, Gomez MI, Van Heeckeren A, Prince A (2004) Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol 30:777–783

    Article  PubMed  CAS  Google Scholar 

  • Murray CS, Simpson A, Custovic A (2004) Allergens, viruses, and asthma exacerbations. Proc Am Thorac Soc 1:99–104

    Article  PubMed  CAS  Google Scholar 

  • Palmer ML, Lee SY, Maniak PJ, Carlson D, Fahrenkrug SC, O’Grady SM (2006) Protease-activated receptor regulation of Cl-secretion in Calu-3 cells requires prostaglandin release and CFTR activation. Am J Physiol 290:C1189–C1198

    Article  CAS  Google Scholar 

  • Proud D, Chow CW (2006) Role of viral infections in asthma and chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 35:513–518

    Article  PubMed  CAS  Google Scholar 

  • Qureshi ST, Medzhitov R (2003) Toll-like receptors and their role in experimental models of microbial infection. Genes Immun 4:87–94

    Article  PubMed  CAS  Google Scholar 

  • Ritter M, Mennerich D, Weith A, Seither P (2005) Characterization of Toll-like receptors in primary lung epithelial cells: strong impact of the TLR3 ligand poly(I:C) on the regulation of Toll-like receptors, adaptor proteins and inflammatory response. J Inflamm (Lond) 2 doi:10.1186/1476-9255-2-16

  • Schleimer RP (2004) Glucocorticoids suppress inflammation but spare innate immune responses in airway epithelium. Proc Am Thorac Soc 1:222–230

    Article  PubMed  CAS  Google Scholar 

  • Shi S, Nathan C, Schnappinger D, Drenkow J, Fuortes M, Block E, Ding A, Gingeras TR, Schoolnik G, Akira S, Takeda K, Ehrt S (2003) MyD88 primes macrophages for full-scale activation by interferon-gamma yet mediates few responses to Mycobacterium tuberculosis. J Exp Med 198:987–997

    Article  PubMed  CAS  Google Scholar 

  • Sukkar MB, Xie S, Khorasani NM, Kon OM, Stanbridge R, Issa R, Chung KF (2006) Toll-like receptor 2, 3, and 4 expression and function in human airway smooth muscle. J Allergy Clin Immunol 118:641–648

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:11–14

    Article  CAS  Google Scholar 

  • Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S (2002) Cutting edge: role of toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169:10–14

    PubMed  CAS  Google Scholar 

  • Tan WC (2005) Viruses in asthma exacerbations. Curr Opin Pulmon Med 11:21–26

    Google Scholar 

  • Triantafilou M, Gamper FGJ, Haston RM, Mouratis MA, Morath S, Hartung T, Triantafilou K (2006) Membrane sorting of Toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem 281:31002–31011

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G, Sher A (2007) Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7:179–190

    Article  PubMed  CAS  Google Scholar 

  • Underhill DM (2003) Macrophage recognition of zymosan particles. J Endotoxin Res 9:176–180

    PubMed  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H (2001) Endocytosed HSP60 use Toll-like receptor 2 (TLR2) and TLR4 to activate to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339

    Article  PubMed  CAS  Google Scholar 

  • Yamashita K, Imaizumi T, Taima K, Fujita T, Ishikawa A, Yoshida H, Oyama C, Satoh K (2005) Polyinosinic-polycytidylic acid induces the expression of GRO-alpha in BEAS-2B cells. Inflammation 29:17–21

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. O’Grady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melkamu, T., Squillace, D., Kita, H. et al. Regulation of TLR2 Expression and Function in Human Airway Epithelial Cells. J Membrane Biol 229, 101–113 (2009). https://doi.org/10.1007/s00232-009-9175-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-009-9175-3

Keywords

Navigation