Skip to main content
Log in

Effect of Fluidizing Agents on Paclitaxel Penetration in Cervical Cancerous Monolayer Membranes

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The aim of this study was to compare modulation of paclitaxel penetration in cancerous and normal cervical monolayers by four fluidizing agents: PCPG (9:1 DPPC:PG), PCPE (9:1 DPPC:DOPE), ALEC (7:3 DPPC:PG) and Exosurf (13.5:1.5:1.0 DPPC:hexadecanol:tyloxapol). Presence of the fluidizing agents improved drug penetration significantly. PCPG and PCPE were promising penetration enhancers. PCPG 0.1% caused 3.8– and 1.7-fold higher maximum increments in surface pressure due to drug penetration, (Δπ)max, than the control in cancerous and normal monolayers, respectively, at 20 mN/m. In cancerous monolayer at 20 mN/m, presence of 0.1%, 0.5%, 1%, 5% and 10% PCPE produced 3.4-, 5.7-, 7.4-, 9.6- and 9.8-fold higher drug penetration compared to the control monolayer without PCPE, respectively. In cancerous monolayer at 20 mN/m, PCPG and PCPE liposomes having 1 mg lipid gave 2.1 and 3.6 times higher (Δπ)max compared to the control, respectively. Further, the liposomal drug penetration was found to be directly proportional to the liposomal lipid content. The effect of the fluidizing agents was confirmed by increased calcein release from model cervical cancer liposomes. These results may have implications in using the above biocompatible lipids and surfactants as penetration enhancers along with anticancer drugs or as carriers for liposomal formulations of anticancer drugs for improved membrane penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Auner BG, O’Neill MAA, Valenta C, Hadgraft J (2005) Interaction of phloretin and 6-ketocholestanol with DPPC-liposomes as phospholipid model membranes. Int J Pharm 294:149–155

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R, Bellare JR (2001) Comparison of in vitro surface properties of clove oil–phospholipid suspensions with those of ALEC, Exosurf and Survanta. Pulm Pharmacol Ther 14:85–91

    Article  PubMed  CAS  Google Scholar 

  • Bangham AD, Miller NGA, Davies RJ, Greendig LA, Morley CJ (1984) Introductory remarks about artificial lung expanding compounds (ALEC). Colloids Surf 10:337–341

    Article  CAS  Google Scholar 

  • Birdi KS (2003) Scanning Probe Microscopes: Applications in Science and Technology. Boca Raton, FL: CRC Press, pp 51–93

    Google Scholar 

  • Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659

    Article  PubMed  CAS  Google Scholar 

  • Crosasso P, Ceruti M, Brusa P, Arpicco S, Dosio F, Cattel L (2000) Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Control Release 63:19–30

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Huang G (2001) Effects of emulsifiers on the controlled release of paclitaxel (Taxol®) from nanospheres of biodegradable polymers. J Control Release 71:53–69

    Article  PubMed  CAS  Google Scholar 

  • Fidelio GD, Maggio B, Cumar FA (1986) Molecular parameters and physical state of neutral glycosphingolipids and gangliosides in monolayers at different temperatures. Biochim Biophys Acta 854:231–239

    Article  PubMed  CAS  Google Scholar 

  • Fonseca C, Simoes S, Graspar R (2002) Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release 83:273–286

    Article  PubMed  CAS  Google Scholar 

  • Gambinossi F, Mecheri B, Nocentini M, Puggelli M, Caminati G (2004) Effect of the phospholipid head group in antibiotic-phospholipid association at water–air interface. Biophys Chem 110:101–117

    Article  PubMed  CAS  Google Scholar 

  • Kamagami S, Okabe H, Kainose H, Kikkawa M, Ishigami Y (1991) Penetration enhancement across a model membrane by liposomally entrapped drugs using N,N′-diacylcystine as a bilayer lipid. FEBS Lett 281:133–136

    Article  PubMed  CAS  Google Scholar 

  • Kang L, Jun HW, McCall JW (2000) Physicochemical studies of lidocaine–menthol binary systems for enhanced membrane transport. Int J Pharm 206:35–42

    Article  PubMed  CAS  Google Scholar 

  • Koziara JM, Lockman PR, Allen DD, Mumper RJ (2004) Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 99:259–269

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Castellano A, Cortell-Ivars C, Lopez-Carballo G, Herraez-Dominguez M (2000) The influence of Span® 20 on stratum corneum lipids in Langmiur monolayers: comparison with Azone®. Int J Pharm 203:245–253

    Article  PubMed  CAS  Google Scholar 

  • Park DC, Kim JH, Lew YO, Kim DH, Namkoong SE (2004) Phase II trial of neoadjuvant paclitaxel and cisplatin in uterine cervical cancer. Gynecol Oncol 92:59–63

    Article  PubMed  CAS  Google Scholar 

  • Preetha A, Huilgol N, Banerjee R (2005a) Interfacial properties as biophysical markers of cervical cancer. Biomed Pharmacother 59:491–497

    Google Scholar 

  • Preetha A, Banerjee R, Huilgol N (2005b) Surface activity, lipid profiles and their implications in cervical cancer. J Cancer Res Ther 1:180–186

    Google Scholar 

  • Preetha A, Huilgol N, Banerjee R (2006) Comparison of paclitaxel penetration in normal and cancerous cervical model monolayer membranes. Colloids Surf B Biointerfaces 53:179–186

    Article  PubMed  CAS  Google Scholar 

  • Ruan G, Feng S (2003) Preparation and characterization of poly (lactic acid)-poly (ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials 24:5037–5044

    Article  PubMed  CAS  Google Scholar 

  • Ruel-Gariepy E, Shive M, Bichara A, Berrada M, Garrec DL, Chenite A, Leroux J (2004) A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 57:53–63

    Article  PubMed  CAS  Google Scholar 

  • Savarrese A, Cognetti F (2003) New drugs in the treatment of recurrent or metastatic cervical cancer. Oncol Hematol 48:323–327

    Article  Google Scholar 

  • Simoes S, Moreira JN, Fonseca C, Duzgunes N, Pedroso-de-Lima MC (2004) On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev 56:947–965

    Article  PubMed  CAS  Google Scholar 

  • Singla AK, Garg A, Aggarwal D (2002) Paclitaxel and its formulations. Int J Pharm 235:179–192

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Nemoto T, Fujiwara T (1994) Biophysical properties of protein-free, totally synthetic pulmonary surfactants, ALEC and Exosurf, in comparison with surfactant TA. Acta Paediatr Jpn 36:613–618

    PubMed  CAS  Google Scholar 

  • Vermehren C, Frokjaer S, Aurstad T, Hansen J (2006) Lung surfactant as a drug delivery system. Int J Pharm 307:89–92

    Article  PubMed  CAS  Google Scholar 

  • Woolfson AD, Malcolm RK, Campbell K, Jones DS, Russell JA (2000) Rheological, mechanical and membrane penetration properties of novel dual drug systems for percutaneous delivery. J Control Release 67:395–408

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Harding PGR, Possmayer F (1984) Artificial pulmonary surfactant: potential role for hexagonal HII phase in the formation of a surface-active monolayer. Biochim Biophys Acta 776:37–47

    Article  CAS  Google Scholar 

  • Zhang JA, Anyarambhatla G, Ma L, Ugwu S, Xuan T, Sardone T, Ahmad I (2004) Development and characterization of a novel Cremphor EL free liposome–based paclitaxel (LEP-ETU) formulation. Eur J Pharm Biopharm 10:1–11

    Google Scholar 

  • Zhao L, Feng S (2004) Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model Biomembranes. J Colloid Interface Sci 274:55–68

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Feng S (2005) Effects of lipid chain unsaturation and headgroup type on molecular interactions between paclitaxel and phospholipid within model biomembrane. J Colloid Interface Sci 285:326–335

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Feng S (2006) Effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within the lipid monolayer at the air–water interface. J Colloid Interface Sci 300:314–326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the All India Council for Technical Education in the form of a Career Award for Young Teachers to R. B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preetha, A., Huilgol, N. & Banerjee, R. Effect of Fluidizing Agents on Paclitaxel Penetration in Cervical Cancerous Monolayer Membranes. J Membrane Biol 219, 83–91 (2007). https://doi.org/10.1007/s00232-007-9064-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9064-6

Keywords

Navigation