Skip to main content
Log in

Control of Intracellular Localization and Function of Cx43 by SEMA3F

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Connexin genes are considered to form a family of tumor-suppressor genes. However, the mechanism of connexin-mediated growth control is not well understood. We now provide several lines of evidence which suggest that SEMA3F, a member of the class 3 semaphorin family, which is also reported to be a tumor suppressor, controls the intracellular localization and function of connexin 43 (Cx43). We employed a series of rat liver epithelial cell lines, among which we previously found that the level of expression of malignant phenotypes (IAR20 < IAR27E < IAR6-1 < IAR27F) is inversely related to that of gap junctional intercellular communication (GJIC). When we immunostained SEMA3F and Cx43 in these cell lines, the extent of immunostaining in the plasma membrane of both proteins decreased in the order of IAR20 > IAR27E > IAR6-1 > IAR27F, suggesting a close relationship between Cx43 and SEMA3F. Further studies revealed a partial colocalization of SEMA3F and Cx43 in the plasma membrane of IAR20 cells. We also found that both SEMA3F and Cx43 moved from the cytoplasm to the plasma membrane in a mouse papilloma cell line when E-cadherin became functional after transferring the cells from low- to high-calcium conditions. When SEMA3F gene expression was inhibited by siRNA in IAR20 cells, Cx43 localization in the plasma membrane and GJIC ability were reduced. Moreover, we found that SEMA3F binds with the cytoplasmic loop domain of Cx43, employing the yeast two–hybrid complementation and screening assays. Taken together, these results strongly suggest that SEMA3F directly associates with Cx43 and controls its intracellular localization and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brambilla E, Constantin B, Drabkin H, Roche J (2000) Semaphorin SEMA3F localization in malignant human lung and cell lines. A suggested role in cell adhesion and cell migration. Am J Pathol 156:939–950

    PubMed  CAS  Google Scholar 

  • Bruzzone R, White TW, Paul DL (1996) Connections with connexins: the molecular basis of firect intercellular signaling. Eur J Biochem 238:1–27

    Article  PubMed  CAS  Google Scholar 

  • Butkevich E, Hulsmann S, Wenzel D, Shirao T, Duden R, Majoul I (2004) Drebrin is a novel connexin-43 binding partner that links gap junctions to the submembrane cytoskeleton. Curr Biol 14:650–658

    Article  PubMed  CAS  Google Scholar 

  • Duffy HS, Sorgen PL, Girvin ME, O’Donnell P, Coombs W, Taffet SM, Delmar M, Spray DC (2002) pH-dependent intramolecular binding and structure involving Cx43 cytoplasmic domains. J Biol Chem 277:36706–36714

    Article  PubMed  CAS  Google Scholar 

  • El-Fouly MH, Trosko JE, Chang CC (1987) Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res 168:422–430

    Article  PubMed  CAS  Google Scholar 

  • Fu CT, Bechberger JF, Ozog MA, Perbal B, Naus CC (2004) CCN3 (NOV) interacts with connexin43 in C6 glioma cells: possible mechanism of connexin-mediated growth suppression. J Biol Chem 279:36943–36950

    Article  PubMed  CAS  Google Scholar 

  • Gellhaus A, Dong X, Propson S, Maass K, Klein-Hitpass L, Kibschull M, Traub O, Willecke K, Perbal B, Lye SJ, Winterhager E (2004) Connexin43 interacts with NOV: a possible mechanism for negative regulation of cell growth in choriocarcinoma cells. J Biol Chem 279:36931–36942

    Article  PubMed  CAS  Google Scholar 

  • Giepmans BN, Moolenaar WH (1998) The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 8:931–934

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Blazquze FJ, Joazeiro PP, Omori Y, Yamasaki H (2001) Control of intracellular movement of connexins by E-cadherin in murine skin papilloma cells. Exp Cell Res 114:545–555

    Google Scholar 

  • Jongen WMF, Fitzferald DJ, Asamoto M, Piccoli C, Slaga TJ, Gros D, Takeichi M, Yamasaki H (1991) Regulation of connexin43-mediated gap junctional intercellular communication by Ca2+ in mouse epidermal cells is controlled by E-cadherin. J Cell Biol 114:545–555

    Article  PubMed  CAS  Google Scholar 

  • Kessler O, Shraga-Heled N, Lange T, Gutmann-Raviv N, Sabo E, Baruch L, Machluf M, Neufeld G (2004) Semaphorin-3F is an inhibitor of tumor angiogenesis. Cancer Res 64:1008–1015

    Article  PubMed  CAS  Google Scholar 

  • Klam RC, Fitzgeral DJ, Piccoli C, Slaga TJ, Yamasaki H (1999) Gap-junctional intercellular communication in epidermal cell lines from selected stages of SENCAR mouse skin carcinogenesis. Cancer Res 49:699–705

    Google Scholar 

  • Krutovskikh V, Mazzoleni G, Mironov N, Omori Y, Aguelon AM, Mesnil M, Berger F, Partensky C, Yamasaki H (1994) Altered homologous and heterologous gap-junctional intercellular communication in primary human liver tumors associated with aberrant protein localization but not gene mutation of connexin 32. Int J Cancer 56:87–94

    Article  PubMed  CAS  Google Scholar 

  • Leithe E, Sirnes S, Rivedal E (2006) Downregulation of gap junctions in cancer cells. Crit Rev Oncog 12:225–256

    PubMed  Google Scholar 

  • Loewenstein WR, Kanno Y (1966) Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature 209:1248–1249

    Article  PubMed  CAS  Google Scholar 

  • Mege RM, Matsuzaki F, Gallin WJ, Goldberg JI, Cunningham BA, Edelman GM (1988) Construction of epithelioid sheets by transfection of mouse sarcoma cells with cDNAs for chicken cell adhesion molecules. Proc Natl Acad Sci USA 85:7274–7278

    Article  PubMed  CAS  Google Scholar 

  • Mesnil M, Asamoto M, Piccoli C, Yamasaki H (1994) Possible molecular mechanism of loss of homologous and heterologous gap junctional intercellular communication in rat liver epithelial cell lines. Cell Adhes Commun 2:377–384

    PubMed  CAS  Google Scholar 

  • Mesnil M, Crespin S, Avanzo JL, Zaidan-Dagli ML (2005) Defective gap junctional intercellular communication in the carcinogenic process. Biochim Biophys Acta 1719:125–145

    Article  PubMed  CAS  Google Scholar 

  • Mesnil M, Montesano R, Yamasaki H (1986) Intercellular communication of transformed and non-transformed rat liver epithelial cells. Exp Cell Res 165:391–402

    Article  PubMed  CAS  Google Scholar 

  • Meyer RA, Laird DW, Revel JP, Johnson RG (1992) Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J Cell Biol 119:179–189

    Article  PubMed  CAS  Google Scholar 

  • Montesano R, Bannikov G, Drevon C, Kuroki T, Saint-Vincent L, Tomatis L (1980) Neoplastic transformation of rat liver epithelial cells in culture. Ann N Y Acad Sci 349:323–331

    Article  PubMed  CAS  Google Scholar 

  • Montesano R, Drevon C, Kuroki T, Saint-Vinsent L, Handleman S, Sanford KK, DeFeo D, Weinstein BJ (1977) Test for malignant transformation of rat liver cells in culture: cytology, growth in soft agar, and production of plasminogen activator. J Natl Cancer Inst 59:1651–1658

    PubMed  CAS  Google Scholar 

  • Morley GE, Taffet SM, Delmar M (1996) Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys J 70:1294–1302

    Article  PubMed  CAS  Google Scholar 

  • Nasarre P, Kusy S, Constanin B, Castellani V, Drabkin HA, Bagnard D, Roche J (2005) Semaphorin SEMA3F has a repulsing activity on breast cancer cells and inhibits E-cadherin-mediated cell adhesion. Neoplasia 7:180–189

    Article  PubMed  CAS  Google Scholar 

  • Omori Y, Yamasaki H (1999) Gap junction proteins connexin32 and connexin43 partially acquire growth-suppressive function in HeLa cells by deletion of their C-terminal tails. Carcinogenesis 20:1913–1918

    Article  PubMed  CAS  Google Scholar 

  • Roche J, Boldog F, Robinson M, Robinson L, Varella-Garcia M, Swanton M, Waggoner B, Fishel R, Franklin W, Gemmill R, Drabkin H (1996) Distinct 3p21.3 deletions in lung cancer and identification of a new human semaphorin. Oncogene 12:1289–1297

    PubMed  CAS  Google Scholar 

  • Seki A, Duffy HS, Coombs W, Spray DC, Taffet SM, Delmar M (2004) Modifications in the biophysical properties of connexin43 channels by a peptide of the cytoplasmic loop region. Circ Res 95:e22–e28

    Article  PubMed  CAS  Google Scholar 

  • Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M, Jan YN, Jan LY (2007) Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128:547–560

    Article  PubMed  CAS  Google Scholar 

  • Sohl G, Willecke K (2003) An update on connexin genes and their nomenculture in mice and man. Cell Commun Adhes 10:173–280

    Article  PubMed  Google Scholar 

  • Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Hori M, Tada M (1998) Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. J Biol Chem 273:12725–12731

    Article  PubMed  CAS  Google Scholar 

  • Trosko JE, Ruch RJ (2002) Gap junctions as targets for cancer chemoprevention and chemotherapy. Curr Drug Targets 3:465–482

    Article  PubMed  CAS  Google Scholar 

  • Xiang R, Davalos AR, Hensel CH, Zhou XJ, Tse C, Naylor SL (2002) Semaphorin 3F gene from human 3p21.3 suppresses tumor formation in nude mice. Cancer Res 62:2637–2643

    PubMed  CAS  Google Scholar 

  • Yamasaki H, Naus CCG (1996) Role of connexin genes in growth control. Carcinogenesis 17:1199–1213

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Hollstein M, Mesnil M, Martel N, Aguelon AM (1987) Selective lack of intercellular communication between transformed and nontransformed cells as a common property of chemical and oncogene transformation of BALAB/c 3T3 cells. Cancer Res 47:5658–5664

    PubMed  CAS  Google Scholar 

  • Yamasaki H, Krutovskikh V, Mesnil M, Tanaka T, Zaidan-Dagli ML, Omori Y (1999a) Role of connexin (gap junction) genes in cell growth control and carcinogenesis. C R Acad Sci III 322:151–159

    Google Scholar 

  • Yamasaki H, Omori Y, Krutovskikh V, Zhu W, Mironov N, Yamakage K, Mesnil M (1999b) Connexins in tumour suppression and cancer therapy. Novartis Found Symp 219:241–260

  • Yamasaki H, Omori Y, Zaidan-Dagli ML, Mironov N, Mesnil M, Krutovskikh V (1999c) Genetic and epigenetic changes of intercellular communication genes during multistage carcinogenesis. Cancer Detect Prev 23:273–279

    Google Scholar 

  • Yu XS, Jiang JX (2004) Interaction of major intrinsic protein (aquaporin-0) with fiber connexins in lens development. J Cell Sci 117:871–880

    Article  PubMed  CAS  Google Scholar 

  • Yu XS, Yin X, Lafer EM, Jiang JX (2005) Developmental regulation of the direct interaction between the intracellular loop of connexin 45.6 and the C terminus of major intrinsic protein (aquaporin-0). J Biol Chem 80:22081–22090

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yamasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasaki, Y., Kubomoto, A. & Yamasaki, H. Control of Intracellular Localization and Function of Cx43 by SEMA3F. J Membrane Biol 217, 53–61 (2007). https://doi.org/10.1007/s00232-007-9051-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9051-y

Keywords

Navigation