Skip to main content
Log in

Gap Junction and Purinergic P2 Receptor Proteins as a Functional Unit: Insights from Transcriptomics

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Gap junctions and purinergic P2 receptors (P2Rs) can be regarded as belonging to a common functional unit, given that they are involved in the transmission of calcium signals between cells. We have previously shown that deletion of the Gja1 gene alters expression levels of numerous genes encoding proteins with diverse functions, including purinergic receptors (P2Rs), and have found that genes synergistically or antagonistically expressed in wild-type tissues are more prone to be similarly or oppositely regulated in Cx43-nulls. We have now explored the use of coordination analysis of gene expression as a strategy to identify interlinked genes encoding functionally related proteins and pull-downs to evaluate their interlinkage. Our findings indicate that, in brain and in cultured astrocytes, several of these coexpressed genes encode proteins that are components of P2R signal-transduction pathways and/or directly interact with these receptors, including the gap junction protein connexin43 (Cx43) and Cx45 as well as pannexins. It is proposed that coordination analysis of gene expression may provide a novel unbiased strategy for the identification of proteins belonging to supramolecular complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ai Z, Fischer A, Spray DC, Brown AM, Fishman GI (2000) Wnt-1 regulation of connexin43 in cardiac myocytes. J Clin Invest 105:161–171

    PubMed  CAS  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29(4):365–371

    Article  PubMed  CAS  Google Scholar 

  • Butkevich E, Hulsmann S, Wenzel D, Shirao T, Duden R, Majoul I (2004) Drebrin is a novel connexin-43 binding partner that links gap junctions to the submembrane cytoskeleton. Curr Biol 14:650–658

    Article  PubMed  CAS  Google Scholar 

  • Charles AC, Giaume C (2002) Intercellular calcium waves in astrocytes: underlying mechanisms and functional consequences. In: Volterra A, Magistretti P, Haydon PG (eds), The Tripartite Synapse: Glia in Synaptic Transmission. New York: Oxford University Press, pp 100–126

    Google Scholar 

  • Dermietzel R, Gao Y, Scemes E, Vieira D, Urban M, Kremer M, Bennett MV, Spray DC (2000) Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Res Brain Res Rev 32:45–56

    Article  PubMed  CAS  Google Scholar 

  • Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328

    PubMed  CAS  Google Scholar 

  • Duffy HS, Ashton AW, O’Donnell P, Coombs W, Taffet SM, Delmar M, Spray DC (2004a) Regulation of connexin43 protein complexes by intracellular acidification. Circ Res 94:215–222

  • Duffy HS, Iacobas I, Spray DC, Ashton AW (2004b) Using antibody arrays to detect protein-protein interactions. In: Dhein S, Mohr FW, Delmar M (eds) Methods in Cardiovascular Research. Berlin, Springer, Heidelberg, pp 916–935

    Google Scholar 

  • Fortes FS, Pecora IL, Persechini PM, Hurtado S, Costa V, Coutinho-Silva R, Braga MB, Silva-Filho FC, Bisaggio RC, De Farias FP, Scemes E, De Carvalho AC, Goldenberg RC (2004) Modulation of intercellular communication in macrophages: possible interactions between GAP junctions and P2 receptors. J Cell Sci 117:4717–4726

    Article  PubMed  CAS  Google Scholar 

  • Fu CT, Bechberger JF, Ozog MA, Perbal B, Naus CC (2004) CCN3 (NOV) interacts with connexin43 in C6 glioma cells: possible mechanism of connexin-mediated growth suppression. J Biol Chem 279:36943–36950

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:218–230

    Article  PubMed  Google Scholar 

  • Ge H, Liu Z, Church GM, Vidal M (2001) Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 29:482–486

    Article  PubMed  CAS  Google Scholar 

  • Gellhaus A, Dong X, Propson S, Maass K, Klein-Hitpass L, Kibschull M, Traub O, Willecke K, Perbal B, Lye SJ, Winterhager E (2004) Connexin43 interacts with NOV: a possible mechanism for negative regulation of cell growth in choriocarcinoma cells. J Biol Chem 279:36931–36942

    Article  PubMed  CAS  Google Scholar 

  • Giepmans BN (2004) Gap junctions and connexin-interacting proteins. Cardiovasc Res 62:233–245

    Article  PubMed  CAS  Google Scholar 

  • Giepmans BN (2006) Role of connexin43-interacting proteins at gap junctions. Adv Cardiol 42:41–56

    Article  PubMed  CAS  Google Scholar 

  • Giepmans BN, Moolenaar WH (1998) The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 8:931–934

    Article  PubMed  CAS  Google Scholar 

  • Herve JC, Bourmeyster N, Sarrouilhe D (2004) Diversity in protein-protein interactions of connexins: emerging roles. Biochim Biophys Acta 1662:22–41

    Article  PubMed  CAS  Google Scholar 

  • Ho C, Hicks J, Salter MW (1995) A novel P2-purinoceptor expressed by a subpopulation of astrocytes from the dorsal spinal cord of the rat. Br J Pharmacol 116:2909–2918

    PubMed  CAS  Google Scholar 

  • Iacobas DA, Iacobas S, Li WE, Zoidl G, Dermietzel R, Spray DC (2005a) Genes controlling multiple functional pathways are transcriptionally regulated in connexin43 null mouse heart. Physiol Genomics 20:211–223

    PubMed  CAS  Google Scholar 

  • Iacobas DA, Iacobas S, Spray DC (2007a) Connexin43 and the brain transcriptome of newborn mice. Genomics 89:113–123

    Article  PubMed  CAS  Google Scholar 

  • Iacobas DA, Iacobas S, Spray DC (2007b) Connexin-dependent transcriptomic networks in mouse brain. Prog Biophys Biophys Chem 94(1–2):169–185

    Article  CAS  Google Scholar 

  • Iacobas DA, Iacobas S, Urban-Maldonado M, Spray DC (2005b) Sensitivity of the brain transcriptome to connexin ablation. Biochim Biophys Acta 1711:183–196

    Article  PubMed  CAS  Google Scholar 

  • Iacobas DA, Scemes E, Spray DC (2004) Gene expression alterations in connexin null mice extend beyond the gap junction. Neurochem Int 45:243–250

    Article  PubMed  CAS  Google Scholar 

  • Iacobas DA, Urban-Maldonado M, Iacobas S, Scemes E, Spray DC (2003) Array analysis of gene expression in connexin-43 null astrocytes. Physiol Genomics 15:177–190

    PubMed  CAS  Google Scholar 

  • Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372

    Article  PubMed  CAS  Google Scholar 

  • Idestrup CP, Salter MW (1998) P2Y and P2U receptors differentially release intracellular Ca2+ via the phospholipase C/inositol 1,4,5-triphosphate pathway in astrocytes from the dorsal spinal cord. Neuroscience 86:913–923

    Article  PubMed  CAS  Google Scholar 

  • Jimenez AI, Castro E, Communi D, Boeynaems JM, Delicado EG, Miras-Portugal MT (2000) Coexpression of several types of metabotropic nucleotide receptors in single cerebellar astrocytes. J Neurochem 75:2071–2079

    Article  PubMed  CAS  Google Scholar 

  • Jin C, Lau AF, Martyn KD (2000) Identification of connexin-interacting proteins: application of the yeast two-hybrid screen. Methods 20:219–231

    Article  PubMed  CAS  Google Scholar 

  • John GR, Scemes E, Suadicani SO, Liu JS, Charles PC, Lee SC, Spray DC, Brosnan CF (1999) IL-1ß differentially regulates calcium wave propagation between primary human fetal astrocytes via pathways involving P2 receptors and gap junction channels. Proc Natl Acad Sci USA 96:11613–11618

    Article  PubMed  CAS  Google Scholar 

  • Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394:527–543

    Article  PubMed  CAS  Google Scholar 

  • Lampe PD, Lau AF (2004) The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 36:1171–1186

    Article  PubMed  CAS  Google Scholar 

  • Lan Z, Kurata WE, Martyn KD, Jin C, Lau AF (2005) Novel rab GAP-like protein, CIP85, interacts with connexin43 and induces its degradation. Biochemistry 44:2385–2396

    Article  PubMed  CAS  Google Scholar 

  • Li W, Hertzberg EL, Spray DC (2005) Regulation of connexin43-protein binding in astrocytes in response to chemical ischemia/hypoxia. J Biol Chem 280:7941–7948

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein WR (1999) The Touchstone of Life: Molecular Information, Cell Communication, and the Foundations of Life. New York: Oxford University Press

    Google Scholar 

  • Loo LW, Kanemitsu MY, Lau AF (1999) In vivo association of pp60v-src and the gap-junction protein connexin 43 in v-src-transformed fibroblasts. Mol Carcinog 25:187–195

    Article  PubMed  CAS  Google Scholar 

  • Narcisse L, Scemes E, Zhao Y, Lee SC, Brosnan CF (2005) The cytokine IL-1ß transiently enhances P2X7 receptor expression and function in human astrocytes. Glia 49:245–258

    Article  PubMed  Google Scholar 

  • Penes MC, Li X, Nagy JI (2005) Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain. Eur J Neurosci 22:404–418

    Article  PubMed  Google Scholar 

  • Scemes E (2000) Components of astrocytic intercellular calcium signaling. Mol Neurobiol 22:167–179

    Article  PubMed  CAS  Google Scholar 

  • Scemes E, Dermietzel R, Spray DC (1998) Calcium waves between astrocytes from Cx43 knockout mice. Glia 24:65–73

    Article  PubMed  CAS  Google Scholar 

  • Scemes E, Duval N, Meda P (2003) Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. J Neurosci 23:11444–11452

    PubMed  CAS  Google Scholar 

  • Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725

    Article  PubMed  Google Scholar 

  • Scemes E, Suadicani SO, Spray DC (2000) Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J Neurosci 20:1435–1445

    PubMed  CAS  Google Scholar 

  • Schubert AL, Schubert W, Spray DC, Lisanti MP (2002) Connexin family members target to lipid raft domains and interact with caveolin-1. Biochemistry 41:5754–5764

    Article  PubMed  CAS  Google Scholar 

  • Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M., Jan YN, Jan LY (2007) Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128:547–560

    Article  PubMed  CAS  Google Scholar 

  • Singh D, Lampe PD (2003) Identification of connexin-43 interacting proteins. Cell Commun Adhes 10:215–220

    Article  PubMed  CAS  Google Scholar 

  • Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385

    Article  PubMed  CAS  Google Scholar 

  • Suadicani SO, Flores CE, Urban-Maldonado M, Beelitz M, Scemes E (2004) Gap junction channels coordinate the propagation of intercellular Ca2+ signals generated by P2Y receptor activation. Glia 48:217–229

    Article  PubMed  CAS  Google Scholar 

  • Suadicani SO, Pina-Benabou MH, Urban-Maldonado M., Spray DC, Scemes E (2003) Acute downregulation of Cx43 alters P2Y receptor expression levels in mouse spinal cord astrocytes. Glia 42:160–171

    Article  PubMed  Google Scholar 

  • Wachi S, Yoneda K, Wu R (2005) Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21:4205–4208

    Article  PubMed  CAS  Google Scholar 

  • Walhout AJ, Reboul J, Shtanko O, Bertin N, Vaglio P, Ge H, Lee H, Doucette-Stamm L, Gunsalus KC, Schetter AJ, Morton DG, Kemphues KJ, Reinke V, Kim SK, Piano F, Vidal M (2002) Integrating interactome, phenome, and transcriptome mapping data for the C. elegans germline. Curr Biol 12:1952–1958

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Francis R, Wei CJ, Linask KL, Lo CW (2006) Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development 133:3629–3639

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Li WE, Huang GY, Meyer R, Chen T, Luo Y, Thomas MP, Radice GL, Lo CW (2001) Modulation of mouse neural crest cell motility by N-cadherin and connexin 43 gap junctions. J Cell Biol 154:217–230

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Kimelberg HK (2001) Developmental expression of metabotropic P2Y1 and P2Y2 receptors in freshly isolated astrocytes from rat hippocampus. J Neurochem 77:530–541

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Kimelberg HK (2004) Cellular expression of P2Y and ß-AR receptor mRNAs and proteins in freshly isolated astrocytes and tissue sections from the CA1 region of P8–12 rat hippocampus. Brain Res Dev Brain Res 148:77–87

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Institutes of Health research grants (NS-41023 to E. S., NS-041282 to D. C. S.). The undergraduate students (C. C., M. C.) were supported by the Summer Research Program at AECOM. We are grateful to Ms. Melissa Aleksey for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana Scemes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iacobas, D.A., Suadicani, S.O., Iacobas, S. et al. Gap Junction and Purinergic P2 Receptor Proteins as a Functional Unit: Insights from Transcriptomics. J Membrane Biol 217, 83–91 (2007). https://doi.org/10.1007/s00232-007-9039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9039-7

Keywords

Navigation