Skip to main content
Log in

High-Level Expression, Refolding and Probing the Natural Fold of the Human Voltage-Dependent Anion Channel Isoforms I and II

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The voltage-dependent anion channel (VDAC) is the major protein found in the outer membrane of mitochondria. The channel is responsible for the exchange of ATP/ADP and the translocation of ions and other small metabolites over the membrane. In order to obtain large amounts of pure and suitably folded human VDAC for functional and structural studies, the genes of the human isoforms I and II (HVDAC1 and HVDAC2) were cloned in Escherichia coli. High-level expression led to inclusion body formation. Both proteins could be refolded in vitro by adding denatured protein to a solution of zwitterionic or nonionic detergents. A highly efficient and fast protocol for refolding was developed that yielded more than 50 mg of pure human VDACs per liter of cell culture. The native and functional state of the refolded porins was probed by Fourier transform infrared spectroscopy to determine the secondary structure composition and by electrophysiological measurements, demonstrating the pore-forming activity of HVDAC1. Furthermore, binding of HVDAC1 to immobilized ATP was demonstrated. Limited proteolysis of HVDAC1 protein embedded in detergent micelles in combination with matrix-assisted laser desorption ionization mass spectrometric analysis was applied to identify micelle-exposed regions of the protein and to develop an improved topology model. Our analysis strongly suggests a 16-stranded, antiparallel β-barrel with one large and seven short loops and turns. Initial crystallization trials of the protein yielded crystals diffracting to 8 Å resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrecht H, Goormaghtigh E, Ruysschaert JM, et al. (2000) Structure and orientation of two voltage-dependent anion-selective channel isoforms – an attenuated total reflection Fourier-transform infrared spectroscopy study. J Biol Chem 275:40992–40999

    Article  PubMed  CAS  Google Scholar 

  • Aiello R, Messina A, Schiffler B, et al. (2004) Functional characterization of a second porin isoform in Drosophila melanogaster. J Biol Chem 279:25364–25373

    Article  PubMed  CAS  Google Scholar 

  • Arrondo JLR, Muga A, Castresana J, et al. (1993) Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog Biophys Mol Biol 59:23–56

    Article  PubMed  CAS  Google Scholar 

  • Ahting U, Thieffry M, Engelhardt H, et al. (2001) Tom40, the pore-forming component of the protein-conducting TOM channel in the outer membrane of mitochondria. J Cell Biol 153:1151–1160

    Article  PubMed  CAS  Google Scholar 

  • Bathori G, Parolini I, Szabo I, et al. (2000) Extramitochondrial porin: facts and hypotheses. J Bioenerg Biomembr 32:79–89

    Article  PubMed  CAS  Google Scholar 

  • Benz R (1985) Porin from bacterial and mitochondrial outer membranes. CRC Crit Rev Biochem 19:145–190

    PubMed  CAS  Google Scholar 

  • Benz R (1994) Permeation of hydrophilic solutes through mitochondrial outer membranes –review on mitochondrial porins. Biochim Biophys Acta 1197:167–196

    PubMed  CAS  Google Scholar 

  • Benz R, Brdiczka D (1992) The cation-selective substrate of the mitochondrial outer membrane pore. Single-channel conductance and influence on intermembrane and peripheral kinases. J Bioenerg Biomembr 24:33–39

    Article  PubMed  CAS  Google Scholar 

  • Benz R, Maier E, Thinnes FP, Götz H, Hilschmann N (1992) Studies on human porin VII. The channel properties of the numan B-lympcyte membrane-derived ‘Porin 31HL’ are similar to those of mitochondrial porins. Biol Chem Hoppe-Seyler 373:295–303

    PubMed  CAS  Google Scholar 

  • Beutner G, Ruck A, Riede B, et al. (1998) Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta 1368:7–18

    Article  PubMed  CAS  Google Scholar 

  • Blachly-Dyson E, Peng SZ, Colombini M, et al. (1990) Selectivity changes in site-directed mutants of the VDAC ion channel – structural implications. Science 247:1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Blachly-Dyson E, Zambronicz EB, Yu WH, et al. (1993) Cloning and functional expression in yeast of two human isoforms of the outer mitochondrial membrane channel, the voltage-dependent anion channel. J Biol Chem 268:1835–1841

    PubMed  CAS  Google Scholar 

  • Brdiczka D, Kaldis P, Wallimann T (1994) In vitro complex formation between the octamer of mitochondrial creatine kinase and porin. J Biol Chem 269:27640–27644

    PubMed  CAS  Google Scholar 

  • Buchanan SK (1999) Beta-barrel proteins form bacterial outer membranes: structure, function and refolding. Curr Opin Struct Biol 9:455–461

    Article  PubMed  CAS  Google Scholar 

  • Bühler S, Michels J, Wendt S, et al. (1998) Mass spectrometric mapping of ion channel proteins (porins) and identification of their supramolecular membrane assembly. Proteins 2:63–73

    Article  PubMed  Google Scholar 

  • Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvoluted FTIR spectra. Biopolymers 25:469–487

    Article  PubMed  CAS  Google Scholar 

  • Casadio R, Jacoboni I, Messina A, et al. (2002) A 3D model of the voltage-dependent anion channel (VDAC). FEBS Lett 520:1–7

    Article  PubMed  CAS  Google Scholar 

  • Colombini M (1980) Structure and mode of action of a voltage-dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane. Ann N Y Acad Sci 341:552–563

    Article  PubMed  CAS  Google Scholar 

  • Colombini M (2004) VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256/257:107–115

    Article  CAS  Google Scholar 

  • De Pinto V, Prezioso G, Thinnes F, et al. (1991) Peptide-specific antibodies and proteases as probes of the transmembrane topology of the bovine heart mitochondrial porin. Biochemistry 30:10191–10200

    Article  PubMed  Google Scholar 

  • De Pinto V, Palmieri F (1992) Transmembrane arrangement of mitochondrial porin or voltage-dependent anion channel (VDAC). J Bioenerg Biomembr 24:21–26

    Article  PubMed  Google Scholar 

  • Dolder M, Zeth K, Tittmann P, et al. (1999) Crystallization of the human, mitochondrial voltage-dependent anion-selective channel in the presence of phospholipids. J Struct Biol 127:64–71

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt H, Gerbl-Rieger S, Krezmar D, et al. (1990) Structural properties of the outer membrane and the regular surface protein of Comamonas acidovorans. J Struct Biol 105:92–105

    Article  CAS  Google Scholar 

  • Eisele JL, Rosenbusch JP (1990) In vitro folding and oligomerization of a membrane protein. Transition of bacterial porin from random coil to native conformation. J Biol Chem 265:10217–10220

    PubMed  CAS  Google Scholar 

  • Fiek C, Benz R, Foos N, et al. (1982) Evidence for identity between the hexokinase-binding protein and the mitochondrial porin in the outer membrane of rat liver mitochondria. Biochim Biophys Acta 688:429–440

    Article  PubMed  CAS  Google Scholar 

  • Florke H, Thinnes FP, Winkelbach H, et al. (1994) Channel-active mammalian porin, purified from crude membrane fractions of human B-lymphocytes and bovine skeletal muscle, reversibly binds adenosine-triphosphate (ATP). Biol Chem Hoppe-Seyler 375:513–520

    PubMed  CAS  Google Scholar 

  • Forte M, Guy HR, Mannella CA (1987) Molecular genetics of the VDAC ion channel. Structural model and sequence analysis. J Bioenerg Biomembr 19:341–350

    Article  PubMed  CAS  Google Scholar 

  • Gerbl-Rieger S, Engelhardt H, Peters J, et al. (1992) Topology of the anion-selective porin Omp32 from Comamonas acidovorans. J Struct Biol 108:14–24

    Article  PubMed  CAS  Google Scholar 

  • Guo XW, Manella CA (1993) Conformational change in the mitochondrial channel, VDAC, detected by electron cryomicroscopy. Biophys J 64:545–549

    PubMed  CAS  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  • Hartman J, Huang Z, Rado TA, et al. (1992) Recombinant synthesis, purification, and nucleotide-binding characteristics of the 1st nucleotide-binding domain of the cystic-fibrosis gene product. J Biol Chem 267:6455–6458

    PubMed  CAS  Google Scholar 

  • Hirsch A, Breed J, Saxena K, et al. (1997) The structure of porin from Paracoccus denitrificans at 3.1 Angstroem resolution. FEBS Lett 404:208–210

    Article  PubMed  CAS  Google Scholar 

  • Haris PI, Chapman D (1992) Does Fourier-transform infrared spectroscopy provide useful information on protein structures? Trends Biochem Sci 17:328–333

    Article  PubMed  CAS  Google Scholar 

  • Jeanteur D, Lakey JH, Pattus F (1991) The bacterial porin superfamily: sequence alignment and structure prediction. Mol Microbiol 5:2153–2164

    Article  PubMed  CAS  Google Scholar 

  • Kauppinen JK, Moffatt DJ, Mantsch HH, et al. (1981) Fourier self-deconvolution – a method for resolving intrinsically overlapped bands. Appl Spectrosc 35:271–276

    Article  CAS  Google Scholar 

  • Koppel DA, Kinnally KW, Masters P, et al. (1998) Bacterial expression and characterization of the mitochondrial outer membrane channel. Effects of N-terminal modifications. J Biol Chem 273:13794–13800

    Article  PubMed  CAS  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, et al. (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    Article  PubMed  CAS  Google Scholar 

  • Leterveer FD, Gellerich FN, Nicolay K (1995) Macromolecules increase the channeling of ADP from externally associated hexokinase to the matrix of mitochondria. Eur J Biochem 232:569–577

    Article  Google Scholar 

  • Pullen JK, Liang SM, Blake MS, et al. (1995) Production of Haemophilus influenzae type-B porin in Escherichia coli and its folding into the trimeric form. Gene 152:85–88

    Article  PubMed  CAS  Google Scholar 

  • Rauch G, Moran O (1994) On the structure of mitochondrial porins and its homologies with bacterial porins. Biochem Biophys Res Commun 200:908–915

    Article  PubMed  CAS  Google Scholar 

  • Rostovtseva TK, Anonsson B, Suzuki M, et al. (2004) Bid, but not Bax, regulates VDAC channels. J Biol Chem 279:13575–13583

    Article  PubMed  CAS  Google Scholar 

  • Rostovtseva TK, Tan W, Colombini M (2005) On the role of VADC in apoptosis: fact and fiction. J Bioenerg Biomembr 37:129–142

    Article  PubMed  CAS  Google Scholar 

  • Schmid B, Kromer M, Schulz GE (1996) Expression of porin from Rhodopseudomonas blastica in Escherichia coli inclusion bodies and folding into exact native structure. FEBS Lett 381:111–114

    Article  PubMed  CAS  Google Scholar 

  • Schurtenberger P, Newman M (1993) Characterization of Biological and Environmental Particles Using Static and Dynamic Light Scattering, vol. 2. Boca Raton, FL: Lewis

    Google Scholar 

  • Shao L, Kinnally KW, Manella CA (1996) Circular dichroism studies of the mitochondrial channel, VDAC, from Neurospora crassa. Biophys J 71:778–786

    Article  PubMed  CAS  Google Scholar 

  • Shi S, Jiang C, Chen Q, et al. (2003) One-step on-column affinity refolding purification and functional analysis of recombinant human VDAC1. Biochem Biophys Res Commun 303:475–482

    Article  PubMed  CAS  Google Scholar 

  • Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS (2006) The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharamceut Design 12:2249–2270

    Article  CAS  Google Scholar 

  • Song J, Midson C, Blachly-Dyson E, et al. (1998) The topology of VDAC as probed by biotin modification. J Biol Chem 273:24406–24413

    Article  PubMed  CAS  Google Scholar 

  • Stuber D, Bannwarth W, Pink JRL, et al. (1990) New B-cell epitopes in the Plasmodium falciparum malaria circumsporozoite protein. Eur J Immunol 20:819–824

    Article  PubMed  CAS  Google Scholar 

  • Thinnes FP, Reymann S (1997) New findings concerning vertebrate porin. Naturwissenschaften 84:480–498

    Article  PubMed  CAS  Google Scholar 

  • Vogel H, Jähnig F (1986) Models for the structure of outer membrane proteins of Escherichia coli derived from Raman spectroscopy and prediction methods. J Mol Biol 190:191–199

    Article  PubMed  CAS  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, et al. (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands – the phosphocreatine circuit for cellular energy homeostasis. Biochem J 281:21–40

    PubMed  CAS  Google Scholar 

  • Weiss MS, Kreusch A, Schiltz E, et al. (1991) The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution. FEBS Lett 280:379–382

    Article  PubMed  CAS  Google Scholar 

  • Yehezkel G, Hadad N, Zaid H, et al. (2006) Nucleotide-binding sites in the voltage-dependent anion channel. J Biol Chem 281:5938–5946

    Article  PubMed  CAS  Google Scholar 

  • Zeth K, Diederichs K, Welte W, et al. (2000) Crystal structure of Omp32, the anion-selective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 Angstroem resolution. Structure 8:981–992

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We very much thank Dr. Jason Breed for critical reading of the manuscript. The help of Joachim Diez at the beginning of the project is gratefully acknowledged. Dr. Michael Forte enabled us to start the porin project by providing us with the cDNA. The help of the beamline staff at the Joint ESRF and EMBL Structural Biology Group (JSBG) beamlines of the European Synchrotron Radiation Facility (Grenoble, France) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kornelius Zeth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelhardt, H., Meins, T., Poynor, M. et al. High-Level Expression, Refolding and Probing the Natural Fold of the Human Voltage-Dependent Anion Channel Isoforms I and II. J Membrane Biol 216, 93–105 (2007). https://doi.org/10.1007/s00232-007-9038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9038-8

Keywords

Navigation