Skip to main content
Log in

The Lens Circulation

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The lens is the largest organ in the body that lacks a vasculature. The reason is simple: blood vessels scatter and absorb light while the physiological role of the lens is to be transparent so it can assist the cornea in focusing light on the retina. We hypothesize this lack of blood supply has led the lens to evolve an internal circulation of ions that is coupled to fluid movement, thus creating an internal micro-circulatory system, which makes up for the lack of vasculature. This review covers the membrane transport systems that are believed to generate and direct this internal circulatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Ghoul KJ, Kirk T, Kuszak AJ, Zoltoski RK, Shiels A, Kuszak JR (2003) Lens structure in MIP-deficient mice. Anat Rec A Discov Mol Cell Evol Biol 273:714–730

    PubMed  Google Scholar 

  • Baldo GJ, Mathias RT (1992) Spatial variations in membrane properties in the intact rat lens. Biophys J 63:518–529

    CAS  PubMed  Google Scholar 

  • Baldo GJ, Gong X, Martinez-Wittinghan FJ, Kumar NM, Gilula NB, Mathias RT (2001) Gap junctional coupling in lenses from alpha(8) connexin knockout mice. J Gen Physiol 118:447–456

    CAS  PubMed  Google Scholar 

  • Ball LE, Garland DL, Crouch RK, Schey KL (2004) Post-translational modifications of aquaporin 0 (AQP0) in the normal human lens: spatial and temporal occurrence. Biochemistry 30:9856–9865

    Google Scholar 

  • Bassnett S (2002) Lens organelle degradation. Exp Eye Res 74:1–16

    CAS  PubMed  Google Scholar 

  • Berthoud VM, Cook AJ, Beyer EC (1994) Characterization of the gap junction protein connexin56 in the chicken lens by immunofluorescence and immunoblotting. Invest Ophthalmol Vis Sci 35:4109–4117

    CAS  PubMed  Google Scholar 

  • Beutler E (1989) Nutritional and metabolic aspects of glutathione. Annu Rev Nutr 9:287–302

    CAS  PubMed  Google Scholar 

  • Burdo J, Dargusch R, Schubert D (2006) Distribution of the cystine/glutamate antiporter system Xc- in the brain, kidney and duodenum. J Histochem Cytochem 54:549–557

    CAS  PubMed  Google Scholar 

  • Candia OA, Alverez JL (2006) Water and ion transport in ocular tissues. Physiol Minirev 1:48–57

    Google Scholar 

  • Candia OA, Zamudio AC (2002) Regional distribution of the Na+ and K+ currents around the crystalline lens of rabbit. Am J Physiol 282:C252–C262

    CAS  Google Scholar 

  • Chandy G, Zampighi GA, Kreman M, Hall JE (1997) Comparison of the water transporting properties of MIP and AQP1. J Membr Biol 159:29–39

    CAS  PubMed  Google Scholar 

  • Chee K-SN, Kistler J, Donaldson PJ (2006) Roles for KCC transporters in the maintenance of lens transparency. Invest Ophthalmol Vis Sci 47:673–682

    PubMed  Google Scholar 

  • Cooper K, Gates P, Rae JL, Dewey J (1990) Electrophysiology of cultured human lens epithelial cells. J Membr Biol 117:285–298

    CAS  PubMed  Google Scholar 

  • Cooper K, Rae JL, Dewey J (1991) Inwardly rectifying potassium current in mammalian lens epithelial cells. Am J Physiol 261(Pt 1):C115–C123

    CAS  PubMed  Google Scholar 

  • Cooper K, Watsky M, Rae J (1992) Potassium currents from isolated frog lens epithelial cells. Exp Eye Res 55:861–868

    CAS  PubMed  Google Scholar 

  • Dahm R, van Marle J, Prescott AR, Quinlan RA (1999) Gap junctions containing alpha8-connexin (MP70) in the adult mammalian lens epithelium suggests a re-evaluation of its role in the lens. Exp Eye Res 69:45–56

    CAS  PubMed  Google Scholar 

  • Davis MA, Wallig MA, Eaton D, Borroz KI, Jeffery EH (1993) Differential effect of cyanohydroxybutene on glutathione synthesis in liver and pancreas of male rats. Toxicol Appl Pharmacol 123:257–264

    CAS  PubMed  Google Scholar 

  • Delamere NA, Tamiya S (2004) Expression, regulation and function of Na,K ATPase in the lens. Prog Retin Eye Res 23:593–615

    CAS  PubMed  Google Scholar 

  • Deneke SM, Fanburg BL (1989) Regulation of cellular glutathione. Am J Physiol 257:L163–L173

    CAS  PubMed  Google Scholar 

  • DeRosa AM, Martinez-Wittinghan MJ, Mathias RT, White TW (2005) Intracellular communication in lens development and disease. In: Winterhager E (ed), Gap Junctions in Development and Disease. Berlin: Springer-Verlag, pp 173–195

    Google Scholar 

  • Donaldson P, Kistler J, Mathias RT (2001) Molecular solutions to mammalian lens transparency. News Physiol Sci 16:118–123

    CAS  PubMed  Google Scholar 

  • Donaldson PJ, Grey AC, Merriman-Smith BR, Sisley AM, Soeller C, Cannell MB, Jacobs MD (2004) Functional imaging: new views on lens structure and function. Clin Exp Pharmacol Physiol 31:890–895

    CAS  PubMed  Google Scholar 

  • Donaldson PJ, Chee KN, Webb KF, Kistler J (2005) Spatially distinct Cl- influx and efflux pathways interact to maintain lens volume and transparency. Invest Ophthalmol Vis Sci 46:1129

    Google Scholar 

  • Duncan G, Hightower KR, Gandolfi SA, Tomlinson JGM (1989) Human lens membrane cation permeability increases with age. Invest Ophthalmol Vis Sci 30:1855–1859

    CAS  PubMed  Google Scholar 

  • Ebihara L (2003a) New roles for connexons. News Physiol Sci 18:100–103

    Google Scholar 

  • Ebihara L (2003b) Physiology and biophysics of hemi-gap-junctional channels expressed in Xenopus oocytes. Acta Physiol Scand 179:5–8

    Google Scholar 

  • Fischbarg J, Diecke FP, Kuang K, Yu B, Kang F, Iserovich P, Li Y, Rosskothen H, Koniarek JP (1999) Transport of fluid by lens epithelium. Am J Physiol 276:C548–C557

    CAS  PubMed  Google Scholar 

  • Gao J, Sun X, Martinez-Wittinghan FJ, Gong X, White TW, Mathias RT (2004) Connections between connexins, calcium, and cataracts in the lens. J Gen Physiol 124:289–300

    CAS  PubMed  Google Scholar 

  • Gao J, Sun X, Yatsula V, Wymore RS, Mathias RT (2000) Isoform-specific function and distribution of Na/K pumps in the frog lens epithelium. J Membr Biol 178:89–101

    CAS  PubMed  Google Scholar 

  • Garner MH, Horowitz J (1994) Catalytic subunit isoforms of mammalian lens Na,K-ATPase. Curr Eye Res 13:65–77

    CAS  PubMed  Google Scholar 

  • Geering K (2006) FXYD proteins; new regulators of Na-K-ATPase. Am J Physiol 290:F241–F250

    CAS  Google Scholar 

  • Gegelashvili G, Schousboe A (1997) High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52:6–15

    CAS  PubMed  Google Scholar 

  • Gick GG, Hatala MA, Chon D, Ismail-Beigi F (1993) Na,K-ATPase in several tissues of the rat: tissue-specific expression of subunit mRNAs and enzyme activity. J Membr Biol 131:229–236

    CAS  PubMed  Google Scholar 

  • Gonen T, Cheng Y, Kistler J, Walz T (2004a) Aquaporin-0 membrane junctions form upon proteolytic cleavage. J Mol Biol 342:1337–1345

    CAS  PubMed  Google Scholar 

  • Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T (2005) Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438:633–638

    CAS  PubMed  Google Scholar 

  • Gonen T, Sliz P, Kistler J, Cheng Y, Walz T (2004b) Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:193–197

    CAS  PubMed  Google Scholar 

  • Gong X, Baldo GJ, Kumar NM, Gilula NB, Mathias RT (1998) Gap junctional coupling in lenses lacking alpha3 connexin. Proc Natl Acad Sci USA 95:15303–15308

    CAS  PubMed  Google Scholar 

  • Goodenough DA, Dick JS 2nd, Lyons JE (1980) Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy. J Cell Biol 86:576–589

    CAS  PubMed  Google Scholar 

  • Gruijters WT, Kistler J, Bullivant S, Goodenough DA (1987) Immunolocalization of MP70 in lens fiber 16–17-nm intercellular junctions. J Cell Biol 104:565–572

    CAS  PubMed  Google Scholar 

  • Jacobs MD, Soeller C, Sisley AM, Cannell MB, Donaldson PJ (2004) Gap junction processing and redistribution revealed by quantitative optical measurements of connexin46 epitopes in the lens. Invest Ophthalmol Vis Sci 45:191–199

    PubMed  Google Scholar 

  • Kalman K, Nemeth-Cahalan KL, Froger A, Hall JE (2006a) AQP0-LTR of the Cat(Fr) mouse alters water permeability and calcium regulation of wild type AQP0. Biochim Biophys Acta 1758:1094–1099

    CAS  PubMed  Google Scholar 

  • Kalman K, Nemeth-Cahalan K, Froger A, Hall JE (2006b) Role of the AQP0 C-terminus in calcium-mediated regulation of water permeability. Association for Research in Vision & Ophthalmology Annual meeting, Ft. Lauderdale, FL. Abstract 5421. http://www.arvo.org

  • Kistler J, Bullivant S (1987) Protein processing in lens intercellular junctions: cleavage of MP70 to MP38. Invest Ophthalmol Vis Sci 28:1687–1692

    CAS  PubMed  Google Scholar 

  • Kistler J, Kirkland B, Bullivant S (1985) Identification of a 70,000-D protein in lens membrane junctional domains. J Cell Biol 101:28–35

    CAS  PubMed  Google Scholar 

  • Kushmerick C, Rice SJ, Baldo GJ, Haspel HC, Mathias RT (1995) Ion, water and neutral solute transport in Xenopus oocytes expressing frog lens MIP. Exp Eye Res 61:351–362

    CAS  PubMed  Google Scholar 

  • Kuszak JR, Bertram BA, Macsai MS, Rae JL (1984) Sutures of the crystalline lens: a review. Scanning Electron Microsc (Pt 3):1369–1378

  • Kuszak JR, Rae JL (1982) Scanning electron microscopy of the frog lens. Exp Eye Res 35:499–519

    CAS  PubMed  Google Scholar 

  • Lauf PK, Adragna NC (2000) K-Cl cotransport: properties and molecular mechanism. Cell Physiol Biochem 10:341–354

    CAS  PubMed  Google Scholar 

  • Le A-C, Musil LS (2001) A novel role for FGF and extracellular signal-regulated kinase in gap junction-mediated intercellular communication in the lens. J Cell Biol 154:197–216

    CAS  PubMed  Google Scholar 

  • Li L, Lim JC, Jacobs MD, Kistler J, Donaldson PJ (2007) Regional differences in cystine accumulation point to a sutural delivery pathway to the lens core. Invest Ophthalmol Vis Sci (in press)

  • Lim J, Lam YC, Kistler J, Donaldson PJ (2005) Molecular characterization of the cystine/glutamate exchanger and the excitatory amino acid transporters in the rat lens. Invest Ophthalmol Vis Sci 46:2869–2877

    PubMed  Google Scholar 

  • Lim J, Lorentzen KA, Kistler J, Donaldson PJ (2006) Molecular identification and characterization of the glycine transporter (GLYT1) and the glutamine/glutamate transporter (ASCT2) in the rat lens. Exp Eye Res 83:447–455

    CAS  PubMed  Google Scholar 

  • Lin JS, Fitzgerald S, Dong Y, Knight C, Donaldson P, Kistler J (1997) Processing of the gap junction protein connexin50 in the ocular lens is accomplished by calpain. Eur J Cell Biol 73:141–149

    CAS  PubMed  Google Scholar 

  • Lou MF (2003) Redox regulation in the lens. Prog Retin Eye Res 22:657–682

    CAS  PubMed  Google Scholar 

  • Mackic JB, Kannan R, Kaplowitz N, Zlokovic BV (1997) Low de novo glutathione synthesis from circulating sulfur amino acids in the lens epithelium. Exp Eye Res 64:615–626

    CAS  PubMed  Google Scholar 

  • Maisel H, Harding CV, Alcala JR, Breadley R (1981) The morphology of the lens. In: Bloemendal H (ed), Molecular and Cellular Biology of the Eye Lens. New York: Wiley, pp 49–83

    Google Scholar 

  • Martinez-Wittinghan FJ, Sellitto C, White TW, Mathias RT, Paul D, Goodenough DA (2004) Lens gap junctional coupling is modulated by connexin identity and the locus of gene expression. Invest Ophthalmol Vis Sci 45:3629–3637

    PubMed  Google Scholar 

  • Mathias RT (1983) Effects of tortuous extracellular pathways on resistance measurements. Biophys J 42:55–59

    CAS  PubMed  Google Scholar 

  • Mathias RT (1985) Epithelial water transport in a balanced gradient system. Biophys J 47:823–836

    CAS  PubMed  Google Scholar 

  • Mathias RT, Rae JL (1985) Transport Properties of the lens. Am J Physiol Cell Physiol 249:C181–C190

    CAS  Google Scholar 

  • Mathias RT, Cohen IS, Wang Y (2000) Isoform-specific regulation of the Na+-K+ pump in heart. New Physiol sci 15:176–180

    CAS  Google Scholar 

  • Mathias RT, Rae JL, Baldo GJ (1997) Physiological properties of the normal lens. Physiol Rev 77:21–50

    CAS  PubMed  Google Scholar 

  • Mathias RT, Rae JL, Ebihara L, McCarthy RT (1985) The localization of transport properties in the frog lens. Biophys J 48:423–434

    CAS  PubMed  Google Scholar 

  • Mathias RT, Rae JL, Eisenberg RS (1979) Electrical properties of structural components of the crystalline lens. Biophys J 25:181–201

    CAS  PubMed  Google Scholar 

  • Mathias RT, Wang H (2005) Local osmosis and isotonic transport. J Membr Biol 208:39–53

    CAS  PubMed  Google Scholar 

  • McBean GJ (2002) Cerebral cystine uptake: a tale of two transporters. Trends Pharmacol Sci 23:299–302

    CAS  PubMed  Google Scholar 

  • McBean GJ, Flynn J (2001) Molecular mechanisms of cystine transport. Biochem Soc Trans 29:717–722

    CAS  PubMed  Google Scholar 

  • Menko SA (2002) Lens epithelial cell differentiation. Exp Eye Res 75:485–490

    CAS  Google Scholar 

  • Merriman-Smith BR, Krushinsky A, Kistler J, Donaldson PJ (2003) Expression patterns for glucose transporters GLUT1 and GLUT3 in the normal rat lens and in models of diabetic cataract. Invest Ophthalmol Vis Sci 44:3458–3466

    PubMed  Google Scholar 

  • Merriman-Smith BR, Young MA, Jacobs MD, Kistler J, Donaldson PJ (2002) Molecular identification of P-glycoprotein: a role in lens circulation? Invest Ophthalmol Vis Sci 43:3008–3015

    PubMed  Google Scholar 

  • Merriman-Smith R, Donaldson P, Kistler J (1999) Differential expression of facilitative glucose transporters GLUT1 and GLUT3 in the lens. Invest Ophthalmol Vis Sci 40:3224–3230

    CAS  PubMed  Google Scholar 

  • Miller AG, Zampighi GA, Hall JE (1992) Single-membrane and cell-to-cell permeability properties of dissociated embryonic chick lens cells. J Membr Biol 128:91–102

    CAS  PubMed  Google Scholar 

  • Mulders SM, Preston GM, Deen PM, Guggino WB, van Os CH, Agre P (1995) Water channel properties of major intrinsic protein of lens. J Biol Chem 270:9010–9016

    CAS  PubMed  Google Scholar 

  • Nemeth-Cahalan KL, Hall JE (2000) pH and calcium regulate the water permeability of aquaporin 0. J Biol Chem 275:6777–6782

    CAS  PubMed  Google Scholar 

  • Nemeth-Cahalan KL, Kalman K, Hall JE (2004) Molecular basis of pH and Ca2+ regulation of aquaporin water permeability. J Gen Physiol 123:573–580

    CAS  PubMed  Google Scholar 

  • Niemeyer MI, Cid LP, Sepulveda FV (2001) K+ conductance activated during regulatory volume decrease. The channels in Ehrlich cells and their possible molecular counterpart. Comp Biochem Physiol A Mol Integr Physiol 130:565–575

    CAS  PubMed  Google Scholar 

  • Parmelee JT (1986) Measurement of steady currents around the frog lens. Exp Eye Res 42:433–441

    CAS  PubMed  Google Scholar 

  • Paterson CA (1972) Distribution and movement of ions in the ocular lens. Doc Ophthalmol 31:1–28

    CAS  PubMed  Google Scholar 

  • Paterson CA, Delamere NA (2004) ATPases and lens ion balance. Exp Eye Res 78:699–703

    CAS  PubMed  Google Scholar 

  • Paterson CA, Eck BA (1971) Chloride concentration and exchange in rabbit lens. Exp Eye Res 11:207–213

    CAS  PubMed  Google Scholar 

  • Paterson CA, Neville MC, Jenkins RM 2nd, Nordstrom DK (1974) Intracellular potassium activity in frog lens determined using ion specific liquid ion-exchanger filled microelectrodes. Exp Eye Res 19:43–48

    CAS  PubMed  Google Scholar 

  • Patterson JW (1980) Volume regulation in rat lens. In: Red Blood Cell and Lens Metabolism. Amsterdam: Elsevier

  • Peskoff A (1979) Electric potential in cylindrical syncytia and muscle fibers. Bull Math Biol 41:183–192

    CAS  PubMed  Google Scholar 

  • Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88:11110–11114

    CAS  PubMed  Google Scholar 

  • Rae JL (1994) Outwardly rectifying potassium currents in lens epithelial cell membranes. Curr Eye Res 13:679–686

    CAS  PubMed  Google Scholar 

  • Rae JL, Rae JS (1992) Whole-cell currents from noncultured human lens epithelium. Invest Ophthalmol Vis Sci 33:2262–2268

    CAS  PubMed  Google Scholar 

  • Rae JL, Shepard AR (1998a) Ion transporters and receptors in cDNA libraries from lens and cornea epithelia. Curr Eye Res 17:708–719

    PubMed  Google Scholar 

  • Rae JL, Shepard AR (1998) Inwardly rectifying potassium channels in lens epithelium are from the IRK1 (Kir 2.1) family. Exp Eye Res 66:347–359

    CAS  PubMed  Google Scholar 

  • Rae JL, Shepard AR (1998c) Molecular biology and electrophysiology of calcium-activated potassium channels from lens epithelium. Curr Eye Res 17:264–275

    CAS  PubMed  Google Scholar 

  • Rae JL, Shepard AR (2000a) Kir2.1 potassium channels and corneal epithelia. Curr Eye Res 20:144–152

    CAS  PubMed  Google Scholar 

  • Rae JL, Shepard AR (2000b) Kv3.3 potassium channels in lens epithelium and corneal endothelium. Exp Eye Res 70:339–348

    CAS  PubMed  Google Scholar 

  • Rathbun WB, Murray DL (1991) Age-related cysteine uptake as rate-limiting in glutathione synthesis and glutathione half-life in the cultured human lens. Exp Eye Res 53:205–212

    CAS  PubMed  Google Scholar 

  • Reddy VN (1990) Glutathione and its function in the lens – an overview. Exp Eye Res 50:771–778

    CAS  PubMed  Google Scholar 

  • Robinson KR, Patterson JW (1982) Localization of steady currents in the lens. Curr Eye Res 2:843–847

    PubMed  Google Scholar 

  • Sardini A, Amey JS, Weylandt KH, Nobles M, Valverde MA, Higgins CF (2003) Cell volume regulation and swelling-activated chloride channels. Biochim Biophys Acta Biomembr 1618:153–162

    CAS  Google Scholar 

  • Shepard AR, Rae JL (1998) Ion transporters and receptors in cDNA libraries from lens and cornea epithelia. Curr Eye Res 17:708–719

    CAS  PubMed  Google Scholar 

  • Shepard AR, Rae JL (1999) Electrically silent potassium channel subunits from human lens epithelium. Am J Physiol 277(Pt 1):C412–C424

    CAS  PubMed  Google Scholar 

  • Shiels A, Bassnett S, Varadaraj K, Mathias R, Al-Ghoul K, Kuszak J, Donoviel D, Lilleberg S, Friedrich G, Zambrowicz B (2001) Optical dysfunction of the crystalline lens in aquaporin-0-deficient mice. Physiol Genomics 7:179–186

    CAS  PubMed  Google Scholar 

  • Sweadner KJ (1989) Isozymes of the Na+/K+-ATPase. Biochim Biophys Acta 988:185–220

    CAS  PubMed  Google Scholar 

  • Sweeney MHJ, Truscott RJW (1998) An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract. Exp Eye Res 67:587–595

    CAS  PubMed  Google Scholar 

  • Tamiya S, Dean WL, Paterson CA, Delamere NA (2003) Regional distribution of Na,K-ATPase activity in porcine lens epithelium. Invest Ophthalmol Vis Sci 44:4395–4399

    PubMed  Google Scholar 

  • Tunstall MJ, Eckert R, Donaldson P, Kistler J (1999) Localized fibre cell swelling characteristic of diabetic cataract can be induced in normal rat lens using the chloride channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid. Ophthalmic Res 31:317–320

    CAS  PubMed  Google Scholar 

  • Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional characterization of a system ASC-like Na+ dependent neutral amino acid transporter. J Biol Chem 271:14883–14890

    CAS  PubMed  Google Scholar 

  • Varadaraj K, Kushmerick C, Baldo GJ, Bassnett S, Shiels A, Mathias RT (1999) The role of MIP in lens fiber cell membrane transport. J Membr Biol 170:191–203

    CAS  PubMed  Google Scholar 

  • Varadaraj K, Kumari S, Shiels A, Mathias RT (2005) Regulation of aquaporin water permeability in the lens. Invest Ophthalmol Vis Sci 46:1393–1402

    PubMed  Google Scholar 

  • Wang XF, Cynader MS (2000) Astrocytes provide cysteine to neurons by releasing glutathione. J Neurochem 74:1434–1442

    CAS  PubMed  Google Scholar 

  • Webb KF (2006) Spatial variations in the membrane properties of differentiating fibre cells isolated from the rat lens. PhD diss, University of Auckland

  • Webb KF, Merriman-Smith BR, Stobie JK, Kistler J, Donaldson PJ (2004) Cl influx into rat cortical lens fiber cells is mediated by a Cl- conductance that is not ClC-2 or -3. Invest Ophthalmol Vis Sci 45:4400–4408

    PubMed  Google Scholar 

  • Yin X, Gu S, Jiang JX (2001a) The development-associated cleavage of lens connexin 45.6 by caspase-3-like protease is regulated by casein kinase II-mediated phosphorylation. J Biol Chem 276:34567–34572

    CAS  PubMed  Google Scholar 

  • Yin X, Gu S, Jiang JX (2001b) Regulation of lens connexin 45.6 by apoptotic protease, caspase-3. Cell Commun Adhes 8:373–376

    CAS  PubMed  Google Scholar 

  • Young MA, Tunstall MJ, Kistler J, Donaldson PJ (2000) Blocking chloride channels in the rat lens: localized changes in tissue hydration support the existence of a circulating chloride flux. Invest Ophthalmol Vis Sci 41:3049–3055

    CAS  PubMed  Google Scholar 

  • Zampighi GA, Eskandari S, Kreman M (2000) Epithelial organization of the mammalian lens. Exp Eye Res 71:415–435

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by National Institutes of Health grant EY06391 and The Health Research Council of New Zealand. We thank Dr. Linda Musil for a critical reading of a preliminary version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Mathias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathias, R.T., Kistler, J. & Donaldson, P. The Lens Circulation. J Membrane Biol 216, 1–16 (2007). https://doi.org/10.1007/s00232-007-9019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9019-y

Keywords

Navigation