Skip to main content
Log in

Intestinal d-Galactose Transport in an Endotoxemia Model in the Rabbit

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Lipopolysaccharide (LPS) is an endotoxin causing sepsis. Studies from our laboratory revealed impaired intestinal absorption of l-leucine and d-fructose in LPS-treated rabbits. The aim of this study was to examine intestinal d-galactose transport following intravenous administration of LPS in the rabbit and to identify the cellular mechanisms driving this process. Endotoxin treatment diminished the buildup of d-galactose in intestinal tissue, the mucosal to serosal transepithelial flux of the sugar and its uptake by brush border membrane vesicles (BBMVs). Intracellular signaling pathways associated with protein kinase C (PKC), protein kinase A (PKA), p38 mitogen-activated protein kinase (p38MAPK), Jun N-terminal kinase (JNK), MAPK/extracellular signal-regulated kinases 1 and 2 (MEK1/2) and proteasome were found to be involved in this reduction in sugar uptake. Na+/glucose cotransporter 1 (SGLT1) protein levels in BBMVs were lower for LPS-treated animals than control animals. These findings indicate that LPS inhibits the intestinal absorption of d-galactose via a complex cellular mechanism that could involve posttranscriptional regulation of the SGLT1 transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abad B, Mesoreno JE, Salvador MT, García-Herrera J, Rodríguez-Yoldi MJ (2001a) Effect of lipopolysaccharide on smalll intestinal l-leucine transport in rabbit. Dig Dis Sci 46:1113–1119

    Google Scholar 

  • Abad B, Mesoreno JE, Salvador MT, García-Herrera J, Rodríguez-Yoldi MJ (2001b) The administration of lipopolysaccharide, in vivo, induces alteration in l-leucine intestinal absorption. Life Sci 70:615–628

    Google Scholar 

  • Abad B, Mesoreno JE, Salvador MT, García-Herrera J, Rodríguez-Yoldi MJ (2002a) Cellular mechanism underlying LPS-induced inhibition of in vitro l-leucine transport across rabbit jejunum. J Endotoxin Res 8:127–133

    Google Scholar 

  • Abad B, Mesoreno JE, Salvador MT, García-Herrera J, Rodríguez-Yoldi MJ (2002b) Tumor necrosis factor-α mediates inhibitory effect of lipopolysaccharide on l-leucine intestinal uptake. Dig Dis Sci 47:1316–1322

    Google Scholar 

  • Anderson KC (2004) Clinical update: novel targets in multiple myeloma. Semin Oncol 16:27–32

    Article  CAS  Google Scholar 

  • Aw TY (1999) Molecular and cellular responses to oxidative stress and changes in oxidation-reduction imbalance in the intestine. Am J Clin Nutr 70:557–565

    PubMed  CAS  Google Scholar 

  • Bennett BL, Sasaki DT, Murray BW, O′Leary EC, Sakata ST, Xu W, Leisten JC, Motiwla A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, Anderson DW (2001) SP600125 an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 98:13681–13686

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brot-Laroche E, Serrano MA, Delhomme B, Alvarado F (1986) Temperature sensitivity and substrate specificity of two distinct Na+-activated d-glucose transport systems in guinea pig jejunal brush border membrane vesicles. J Biol Chem 261:6168–6176

    PubMed  CAS  Google Scholar 

  • Brown K, Gerstberger L, Carlson L, Franzoso G, Siebenlist U (1995) Control of I-kB-α proteolysis by site specific, signal-induction phosphorylation. Science 267:1485–1488

    Article  PubMed  CAS  Google Scholar 

  • Calleja L, Paris MA, Paul A, Vilella E, Joven J, Jimenez A, Beltran G, Uceda M, Maeda M, Osada J (1999) Low-cholesterol and high-fat diets reduce atherosclerotic lesion development in ApoE-knockout mice. Arterioscler Thromb Vasc Biol 19:2368–2375

    PubMed  CAS  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signaling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  • Cheng H-C, Kemp BE, Pearson RB, Smith AJ, Misconi L, Van Patten SM, Walsh DA (1986) A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. J Biol Chem 261:989–992

    PubMed  CAS  Google Scholar 

  • Chow CW, Grinstein S, Rotstein OD (1995) Signaling events in monocytes and macrophages. New Horiz 3:342–351

    PubMed  CAS  Google Scholar 

  • Dahlqvist A (1984) Method for assay of intestinal disaccharides. Anal Biochem 7:18–25

    Article  Google Scholar 

  • De Plaen IG, Tan XD, Chang H, Wang L, Remick DJ, Hsueh W (2000) Lipopolysaccharide activates nuclear factor-κB in rat intestine: role of endogenous platelet-activating factor and tumour necrosis factor. Br J Pharmacol 129:307–314

    Article  PubMed  Google Scholar 

  • García-Herrera J, Abad B, Rodríguez-Yoldi MJ (2003) Effect of lipopolysaccharide on d-fructose transport across rabbit jejunum. Inflamm Res 52:177–184

    Article  PubMed  Google Scholar 

  • Gardiner KR, Ahrendt GM, Gardiner RE, Barbul A (1995) Failure of intestinal amino acid absorptive mechanisms in sepsis. J Am Coll Surg 181:431–436

    PubMed  CAS  Google Scholar 

  • Grondahl ML, Thorboll JE, Hansen MB, Skadhauge E (1998) Regional differences in the effect of cholera toxin and enterotoxigenic Escherichia coli infection on electrolyte and fluid transport in the porcine small intestine. Zentralbl Veterinarmed A 45:369–381

    PubMed  CAS  Google Scholar 

  • Guan Q-H, Pei D-S, Zhang Q-G, Hao ZB, Xu T-L, Zhang G-Y (2005) The neuroprotective action of SP600125, a new inhibitor of JNK, on transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 via nuclear and non-nuclear pathways. Brain Res 1035:51–59

    Article  PubMed  CAS  Google Scholar 

  • Hauser H, Howell K, Dawson RMC, Bowyer DE (1980) Rabbit small intestinal brush border membrane preparation and lipid composition. Biochim. Biophys Acta 602:567–577

    Article  PubMed  CAS  Google Scholar 

  • Hecht G, Koutsouris A (1999) Enteropathogenic E. coli attenuates secretagogue-induced net intestinal ion transport but not Cl- secretion. Am J Physiol 276:G781–G788

    PubMed  CAS  Google Scholar 

  • Helliwell PA, Richardson M, Affleck J, Kellet GL (2000) Regulation of GLUT5, GLUT2 and intestinal brush-border fructose absorption by the extracellular signal-regulated kinase, p38 mitogen-activated kinase and phosphatidylinositol 3-kinase intracellular signaling pathways: implications for adaptation to diabetes. Biochem J 350:163–169

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Wang Y, Graham WV, Su L, Musch MW, Turner JR (2006) MAPKAPK-2 is a critical signaling intermediate in NHE3 activation following Na+-glucose cotransport. J Biol Chem 281:24247–24253

    Article  PubMed  CAS  Google Scholar 

  • Israel A (2000) The IKK complex: an integrator of all signals that activate NF-κB? Trends Cell Biol 10:129–133

    Article  PubMed  CAS  Google Scholar 

  • Johnson GB, Brunn GJ, Samstein B (2005) New insight into the pathogenesis of sepsis and the sepsis syndrome. Surgery 137:393–395

    Article  PubMed  Google Scholar 

  • Karima R, Matsumoto S, Higashi H, Matsuhima K (1999) The molecular pathogenesis of endotoxic sock and organ failure. Mol Med Today 5:123–132

    Article  PubMed  CAS  Google Scholar 

  • Kroiss M, Leyerer M, Gorboulev V, Kühlkamp T, Kipp H, Koepsell H (2006) Transporter regulator RS1 (RSCaA1) coats the trans-Golgi network and migrates into the nucleus. Am J Physiol 291:F1201–F1212

    Article  CAS  Google Scholar 

  • Magnani M, Crinelli R, Bianchi M, Antonelli A (2000) The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-κB (NF-κB). Curr Drug Targets 1:387–399

    Article  PubMed  CAS  Google Scholar 

  • Meriin AB, Gabai VL, Yaglom J, Shifrin VI, Sherman MY (1998) Proteasome inhibitors activate stress kinases and induce Hsp72. J Biol Chem 273:6373–6379

    Article  PubMed  CAS  Google Scholar 

  • Nelson JE, Loukissa A, Atschuller-Felberg C, Monaco JJ, Fallon JT, Cardozo C (2000) Up-regulation of the proteasome subunit LMP7 in tissues of endotoxemic rats. J Lab Clin Med 135:324–331

    Article  PubMed  CAS  Google Scholar 

  • Pritts TA, Moon MR, Wang Q, Hungness ES, Salzman AL, Fischer JE, Hasselgren PO (2000) Activation of NF-κB varies in different regions of the gastrointestinal tract during endotoxemia. Shock 14:118–122

    Article  PubMed  CAS  Google Scholar 

  • Proverbio F, del Castillo JR (1981) Na+-stimulated ATPase activities in kidney basal-lateral plasma membranes. Biochim Biophys Acta 646:99–108

    Article  PubMed  CAS  Google Scholar 

  • Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771

    Article  PubMed  CAS  Google Scholar 

  • Ruckdeschel K, Harb S, Roggenkamp A, Hornef M, Zumbihl R, Kohler S, Heesemann J, Rouot B (1998) Yersinia enterocolitica impairs activation of transcription factor NF-κB: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor-α production. J Exp Med 187:1069–1079

    Article  PubMed  CAS  Google Scholar 

  • Salloum RM, Copeland EM, Souba WW (1991) Brush border transport of glutamine and other substrates during sepsis and endotoxemia. Ann Surg 213:401–409

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Osthoff K, Ferrari D, Riehemann K, Wesselborg S (1997) Regulation of NF-κB activation by MAP kinase cascades. Immunobiology 1–3:35–49

    Google Scholar 

  • Schütze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M (1992) TNF activates NF-κB by phosphatidylcholine-specific phospholipase C induced “acidic” sphingomyelin breakdown. Cell 71:765–776

    Article  PubMed  Google Scholar 

  • Shirazi-Beechey SP, Davier AG, Tebbutt K, Dyer J, Ellis A, Taylor CJ, Fairclough P, Beechey RB (1990) Preparation and properties of brush-border membrane vesicles from human small intestine. Gastroenterology 98:676–685

    PubMed  CAS  Google Scholar 

  • Sodeyama M, Gardiner KR, Regan MC, Kirk SJ, Efron G, Barbul A (1993) Sepsis impairs gut amino acid absorption. Am J Surg 165:150–154

    Article  PubMed  CAS  Google Scholar 

  • Squires MS, Nixon PM, Cook SJ (2002) Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK)1/2 but not ERK5/BMK1. Biochem J 366:673–680

    Article  PubMed  CAS  Google Scholar 

  • Steel GR, Torrie HJ (1960) Principles and Procedures Statistics. McGraw-Hill, New York

    Google Scholar 

  • Sundaram U, Wisel S, Fromkes JJ (1998) Unique mechanism of inhibition of Na+-amino acid cotransport during chronic ileal inflammation. Am J Physiol 275:G483–G489

    PubMed  CAS  Google Scholar 

  • Sundaram U, Wisel S, Rajendrem VM, West AB (1997) Mechanism of the inhibition of Na+- glucose cotransport in the chronically inflammed rabbit illeum. Am J Physiol 273:G913–G919

    PubMed  CAS  Google Scholar 

  • Suzuki T, Grand E, Bowman C, Merchant JL, Todisco A, Wang L, Del Valle J (2001) TNF-α and interleukin 1 activate gastrin gene expression via MAPK- and PKC-dependent mechanisms. Am J Physiol 281:G1405–G1412

    CAS  Google Scholar 

  • van den Blink B, Branger J, Weijer S, Van Deventer SJH, Van der Poll T, Peppelenbosch MP (2001) Human endotoxemia activates p38 MAP kinase and p42/44 MAP kinase but not c-Jun-N-terminal kinase. Mol Med 7:755–760

    PubMed  Google Scholar 

  • Vayro S, Silverman M (1999) PKC regulates turnover rate of rabbit intestinal Na+-glucose transporter expressed in COS-7 cells. Am J Physiol 276:C1053–1060

    PubMed  CAS  Google Scholar 

  • Veyhl M, Keller T, Gorboulev V, Vernaleken A, Koepsell H (2006) RS1 (RSC1A1) regulates the exocytotic pathway of Na+-d-glucose cotransporter SGLT1. Am J Physiol 291:F1213–F1223

    Article  CAS  Google Scholar 

  • Wright EM, Hirsch JR, Loo DDF, Zampighi GA (1997) Regulation of Na+/glucose cotransporters. J Exp Biol 200:287–293

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The SGLT1 rabbit polyclonal antibody and the cDNA clone were kindly provided by Dr. E. Wright (UCLA, Los Angeles, CA). This work was supported by grants from the Ministerio de Ciencia y Tecnología (AGL 2003–04497/GAN, PGE+FEDER) and the Departamento de Ciencia, Tecnología y Universidad del Gobierno de Aragón, Spain A-32. The group belongs to the Network for Cooperative Research on Membrane Transport Proteins, cofunded by the Ministerio de Educación y Ciencia, Spain, and the European Regional Development Fund (grant BFU2005-24983-E/BFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Rodríguez-Yoldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amador, P., García-Herrera, J., Marca, M.C. et al. Intestinal d-Galactose Transport in an Endotoxemia Model in the Rabbit. J Membrane Biol 215, 125–133 (2007). https://doi.org/10.1007/s00232-007-9012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9012-5

Keywords

Navigation