Skip to main content
Log in

Serotonin Transporters – Structure and Function

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adams S.V., DeFelice L.J. 2002. Flux coupling in the human serotonin transporter. Biophys. J. 83:3268–3282

    PubMed  CAS  Google Scholar 

  • Adkins E.M., Barker E.L., Blakely R.D. 2001. Interactions of tryptamine derivatives with serotonin transporter species variants implicate transmembrane domain I in substrate recognition. Mol. Pharmacol. 59:514–523

    PubMed  CAS  Google Scholar 

  • Androutsellis-Theotokis A., Ghassemi F., Rudnick G. 2001. A Conformationally Sensitive Residue on the Cytoplasmic Surface of Serotonin Transporter. J. Biol. Chem. 276:45933–45938

    Article  PubMed  CAS  Google Scholar 

  • Androutsellis-Theotokis A., Goldberg N.R., Ueda K., Beppu T., Beckman M.L., Das S., Javitch J.A., Rudnick G. 2003. Characterization of a Functional Bacterial Homologue of Sodium-dependent Neurotransmitter Transporters. J. Biol. Chem. 278:12703–12709

    Article  PubMed  CAS  Google Scholar 

  • Androutsellis-Theotokis A., Rudnick G. 2002. Accessibility and conformational coupling in serotonin transporter predicted internal domains. J. Neurosci. 22:8370–8378

    PubMed  CAS  Google Scholar 

  • Barker E.L., Moore K.R., Rakhshan F., Blakely R.D. 1999. Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. J. Neurosci. 19:4705–4717

    PubMed  CAS  Google Scholar 

  • Barker E.L., Perlman M.A., Adkins E.M., Houlihan W.J., Pristupa Z.B., Niznik H.B., Blakely R.D. 1998. High affinity recognition of serotonin transporter antagonists defined by species-scanning mutagenesis - an aromatic residue in transmembrane domain I dictates species-selective recognition of citalopram and mazindol. J. Biol. Chem. 273:19459–19468

    Article  PubMed  CAS  Google Scholar 

  • Beuming, T., Shi, L., Javitch, J.A., Weinstein, H. 2006. A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol. Pharmacol. 70:1630–1642

    Article  PubMed  CAS  Google Scholar 

  • Cao Y., Li M., Mager S., Lester H.A. 1998. Amino acid residues that control pH modulation of transport-associated current in mammalian serotonin transporters. J. Neurosci. 18:7739–7749

    PubMed  CAS  Google Scholar 

  • Cao Y.W., Mager S., Lester H.A. 1997. H+ Permeation and pH regulation at a mammalian serotonin transporter. J. Neurosci. 17:2257–2266

    PubMed  CAS  Google Scholar 

  • Chen J.G., Liu-Chen S., Rudnick G. 1997a. External cysteine residues in the serotonin transporter. Biochemistry 36:1479–1486

    Article  CAS  Google Scholar 

  • Chen J.G., Liu-Chen S., Rudnick G. 1998. Determination of external loop topology in the serotonin transporter by site-directed chemical labeling. J. Biol. Chem. 273:12675–12681

    Article  PubMed  CAS  Google Scholar 

  • Chen J.G., Rudnick G. 2000. Permeation and gating residues in serotonin transporter. Proc. Natl. Acad. Sci. USA 97:1044–1049

    Article  PubMed  CAS  Google Scholar 

  • Chen J.G., Sachpatzidis A., Rudnick G. 1997b. The third transmembrane domain of the serotonin transporter contains residues associated with substrate and cocaine binding. J. Biol. Chem. 272:28321–28327

    Article  CAS  Google Scholar 

  • Chen R., Han D.D., Gu H.H. 2005. A triple mutation in the second transmembrane domain of mouse dopamine transporter markedly decreases sensitivity to cocaine and methylphenidate. J. Neurochem. 94:352–359

    Article  PubMed  CAS  Google Scholar 

  • Farhan H., Korkhov V.M., Paulitschke V., Dorostkar M.M., Scholze P., Kudlacek O., Freissmuth M., Sitte H.H. 2004. Two discontinuous segments in the carboxyl terminus are required for membrane targeting of the rat {gamma}-aminobutyric acid transporter-1 (GAT1). J. Biol. Chem. 279:28553–28563

    Article  PubMed  CAS  Google Scholar 

  • Gu H., Wall S.C., Rudnick G. 1994. Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J. Biol. Chem. 269:7124–7130

    PubMed  CAS  Google Scholar 

  • Gu H.H., Wu X.H., Giros B., Caron M.G., Caplan M.J., Rudnick G. 2001. The NH2terminus of norepinephrine transporter contains a basolateral localization signal for epithelial cells. Mol. Biol. Cell 12:3797–3807

    PubMed  CAS  Google Scholar 

  • Henry L.K., Adkins E.M., Han Q., Blakely R.D. 2003. Serotonin and cocaine-sensitive inactivation of human serotonin transporters by methanethiosulfonates targeted to transmembrane domain I. J. Biol. Chem. 278:37052–37063

    Article  PubMed  CAS  Google Scholar 

  • Humphreys C.J., Wall S.C., Rudnick G. 1994. Ligand binding to the serotonin transporter: Equilibria, kinetics and ion dependence. Biochemistry 33:9118–9125

    Article  PubMed  CAS  Google Scholar 

  • Jardetzky O. 1966. Simple allosteric model for membrane pumps. Nature 211:969–970

    Article  PubMed  CAS  Google Scholar 

  • Jencks W.P. 1980. The utilization of binding energy in coupled vectorial processes. Adv. Enzymol. Relat Areas Mol. Biol. 51:75–106

    Article  PubMed  CAS  Google Scholar 

  • Keller, P.C., II, Stephan M., Glomska H., Rudnick G. 2004. Cysteine-scanning mutagenesis of the fifth external loop of serotonin transporter. Biochemistry 43:8510–8516

    Article  PubMed  CAS  Google Scholar 

  • Keynan S., Kanner B.I. 1988. gamma-Aminobutyric acid transport in reconstituted preparations from rat brain: coupled sodium and chloride fluxes. Biochemistry 27:12–17

    Article  PubMed  CAS  Google Scholar 

  • Lin F., Lester H.A., Mager S. 1996. Single-channel currents produced by the serotonin transporter and analysis of a mutation affecting ion permeation. Biophys. J. 71:3126–3135

    Article  PubMed  CAS  Google Scholar 

  • Mager S., Min C., Henry D.J., Chavkin C., Hoffman B.J., Davidson N., Lester H.A. 1994. Conducting states of a mammalian serotonin transporter. Neuron 12:845859

    Article  Google Scholar 

  • Melamed N., Kanner B.I. 2004. Transmembrane domains I and II of the γ-aminobutyric acid transporter GAT-4 contain molecular determinants of substrate specificity. Mol. Pharmacol. 65:1452–1461

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P. 1963. Molecule, group and electron translocation through natural membranes. Biochem. Soc. Symp. 22:142–168

    Google Scholar 

  • Mitchell S.M., Lee E., Garcia M.L., Stephan M.M. 2004. Structure and function of extracellular loop 4 of the serotonin transporter as revealed by cysteine-scanning mutagenesis. J. Biol. Chem. 279:24089–24099

    Article  PubMed  CAS  Google Scholar 

  • Muth T.R., Ahn J., Caplan M.J. 1998. identification of sorting determinants in the C-terminal cytoplasmic tails of the gamma-aminobutyric acid transporters GAT-2 and GAT-3. J. Biol. Chem. 273:25616–25627

    Article  PubMed  CAS  Google Scholar 

  • Nelson P.J., Rudnick G. 1979. Coupling between platelet 5-hydroxytryptamine and potassium transport. J. Biol. Chem. 254:10084–10089

    PubMed  CAS  Google Scholar 

  • Ni Y.G., Chen J.G., Androutsellis-Theotokis A., Huang C.J., Moczydlowski E., Rudnick G. 2001. A lithium-induced conformational change in serotonin transporter alters cocaine binding, ion conductance, and reactivity of cys-109. J. Biol. Chem. 276:30942–30947

    Article  PubMed  CAS  Google Scholar 

  • Perego C., Bulbarelli A., Longhi R., Caimi M., Villa A., Caplan M.J., Pietrini G. 1997. Sorting of two polytopic proteins, the gamma-aminobutyric acid and betaine transporters, in polarized epithelial cells. J. Biol. Chem. 272:6584–6592

    Article  PubMed  CAS  Google Scholar 

  • Petersen C.I., DeFelice L.J. 1999. Ionic interactions in the Drosophila serotonin transporter identify it as a serotonin channel. Nat. Neurosci. 2:605–610

    Article  PubMed  CAS  Google Scholar 

  • Quick, M., Yano, H., Goldberg, N.R., Duan, L., Beuming, T., Shi, L., Weinstein, H., Javitch, J.A. 2006. State-dependent conformations of the translocation pathway in the tyrosine transporter Tyt1, a novel neurotransmitter:sodium symporter from Fusobacterium nucleatum. J. Biol. Chem. 281: 26444–26454

    Article  PubMed  CAS  Google Scholar 

  • Quick M.W. 2003. Regulating the conducting states of a mammalian serotonin transporter. Neuron 40:537–549

    Article  PubMed  CAS  Google Scholar 

  • Rapp M., Granseth E., Seppala S., von Heijne G. 2006. Identification and evolution of dual-topology membrane proteins. Nat. Struct. Mol. Biol. 13:112–116

    Article  PubMed  CAS  Google Scholar 

  • Roux M.J., Supplisson S. 2000. Neuronal and glial glycine transporters have different stoichiometries. Neuron 25:373–383

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G. 1977. Active Transport of 5-Hydroxytryptamine by plasma membrane vesicles isolated from human blood platelets. J. Biol. Chem. 252:2170–2174

    PubMed  CAS  Google Scholar 

  • Rudnick G. 1998. Bioenergetics of neurotransmitter transport. J. Bioenerget. Biomembr. 30:173–185

    Article  CAS  Google Scholar 

  • Rudnick G. 2002. Mechanisms of Biogenic Amine Neurotransmitter Transporters. In: Reith MEA, editor. Neurotransmitter Transporters, Structure, Function, and Regulation. Humana Press, Totowa, New Jersey, pp. 25–52

    Chapter  Google Scholar 

  • Rudnick G., Clark J. 1993. From synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters. Biochim. Biophys. Acta 1144:249–263

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G., Nelson P.J. 1978. Platelet 5-hydroxytryptamine transport - an electroneutral mechanism coupled to potassium. Biochemistry 17:4739–4742

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G., Wall S.C. 1992. The molecular mechanism of ”ecstasy” [3,4methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc. Natl. Acad. Sci. USA 89:1817–1821

    Article  PubMed  CAS  Google Scholar 

  • Saier, M.H. 1999. A functional-phylogenetic system for the classification of transport proteins. J. Cell. Biochem. :84–94

  • Sato Y., Zhang Y.-W., Androutsellis-Theotokis A., Rudnick G. 2004. Analysis of transmembrane domain 2 of rat serotonin transporter by cysteine scanning mutagenesis. J. Biol. Chem. 279:22926–22933

    Article  PubMed  CAS  Google Scholar 

  • Sen N., Shi L., Beuming T., Weinstein H., Javitch J.A. 2005. A pincer-like configuration of TM2 in the human dopamine transporter is responsible for indirect effects on cocaine binding. Neuropharmacology 49:780–790

    Article  PubMed  CAS  Google Scholar 

  • Smicun Y., Campbell S.D., Chen M.A., Gu H., Rudnick G. 1999. The role of external loop regions in serotonin transport. Loop scanning mutagenesis of the serotonin transporter external domain. J. Biol. Chem. 274:36058–36064

    Article  PubMed  CAS  Google Scholar 

  • Spencer R.H., Rees D.C. 2002. The alpha-helix and the organization and gating of channels. Annu. Rev. Biophys. Biomol. Struct. 31:207–233

    Article  PubMed  CAS  Google Scholar 

  • Stephan M.M., Chen M.A., Penado K.M., Rudnick G. 1997. An extracellular loop region of the serotonin transporter may be involved in the translocation mechanism. Biochemistry 36:1322–1328

    Article  PubMed  CAS  Google Scholar 

  • Talvenheimo J., Fishkes H., Nelson P.J., Rudnick G. 1983. The serotonin transporter-imipramine ’receptor’: Different sodium requirements for imipramine binding and serotonin translocation. J. Biol. Chem. 258:6115–6119

    PubMed  CAS  Google Scholar 

  • Tanford C. 1983. Translocation pathway in the catalysis of active transport. Proc. Natl. Acad. Sci. USA 80:3701–3705

    Article  PubMed  CAS  Google Scholar 

  • Tate C., Blakely R. 1994. The effect of N-linked glycosylation on activity of the Na+-and Cl-dependent serotonin transporter expressed using recombinant baculovirus in insect cells. J. Biol. Chem. 269:26303–26310

    PubMed  CAS  Google Scholar 

  • Yamashita A., Singh S.K., Kawate T., Jin Y., Gouaux E. 2005. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–223

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y.W., Rudnick G. 2005. Cysteine scanning mutagenesis of serotonin transporter intracellular loop 2 suggests an alpha-helical conformation. J. Biol. Chem. 280:30807–30813

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y.-W., Rudnick, G. 2006. The cytoplasmic substrate permeation pathway of serotonin transporter. J. Biol. Chem. 281:36213–36220

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y., Bennett E.R., Kanner B.I. 2004. The aqueous accessibility in the external half of transmembrane domain I of the GABA transporter GAT-1 is modulated by its ligands. J. Biol. Chem. 279:13800–13808

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from the following grants from NIH: DA07259, DA08213, DA12408 and GM075347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Rudnick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudnick, G. Serotonin Transporters – Structure and Function. J Membrane Biol 213, 101–110 (2006). https://doi.org/10.1007/s00232-006-0878-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0878-4

Keywords

Navigation